Skip to content

Latest commit

 

History

History
469 lines (347 loc) · 22.8 KB

README.md

File metadata and controls

469 lines (347 loc) · 22.8 KB

Typography Research Collection

[hackmd][github] [github pages]

Typography is the cross between technology and liberal arts. This page is a research collection that includes computer graphics, computer vision, machine learning that related to typography.

Font Stye Transfer and Glyph Generation

NN Approach

  • Multiple Heads are Better than One:Few-shot Font Generation with Multiple Localized Experts
    • Song Park, Sanghyuk Chun, Junbum Cha, Bado Lee, Hyunjung Shim
    • [paper][code]
    • arxiv 2021

  • Font Style that Fits an Image -- Font Generation Based on Image Context
    • [paper][code]
    • Taiga Miyazono, Brian Kenji Iwana, Daichi Haraguchi, and Seiichi Uchida
    • arxiv 2021

  • Few-shot Font Generation with Localized Style Representations and Factorization

  • Handwritten Chinese Font Generation with Collaborative Stroke Refinement

  • RD-GAN: Few/Zero-Shot Chinese Character Style Transfer via Radical Decomposition and Rendering
    • Yaoxiong Huang, Mengchao He, Lianwen Jin, Yongpan Wang
    • [paper(ECVA)]
    • ECCV 2020

  • Few-shot Compositional Font Generation with Dual Memory
    • Junbum Cha, Sanghyuk Chun, Gayoung Lee, Bado Lee, Seonghyeon Kim, Hwalsuk Lee.
    • [paper] [code]
    • ECCV 2020

  • CalliGAN: Style and Structure-aware Chinese Calligraphy Character Generator
    • [paper][code]
    • Shan-Jean Wu, Chih-Yuan Yang and Jane Yung-jen Hsu
    • AI for Content Creation Workshop CVPR 2020.

  • A Learned Representation for Scalable Vector Graphics
    • [paper]
    • Raphael Gontijo Lopes, David Ha, Douglas Eck, Jonathon Shlens
    • ICCV 2019
    • ICLR workshop 2019

  • Large-scale Tag-based Font Retrieval with Generative Feature Learning

    • [paper][page]
    • Tianlang Chen, Zhaowen Wang, Ning Xu, Hailin Jin, Jiebo Luo
    • ICCV 2019
  • DynTypo: Example-based Dynamic Text Effects Transfer

    • [paper]
    • Yifang Men, Zhouhui Lian, Yingmin Tang, Jianguo Xiao
    • CVPR 2019
    • <iframe width="560" height="315" src="https://www.youtube.com/embed/FkFQ6bV1s-o" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
  • DeepGlyph

  • Coconditional Autoencoding Adversarial Networks for Chinese Font Feature Learning

    • [paper]
    • arxiv 2018
    • Zhizhan Zheng, Feiyun Zhang
  • TET-GAN: Text Effects Transfer via Stylization and Destylization

    • [paper]
    • Shuai Yang, Jiaying Liu, Wenjing Wang, Zongming Guo
    • AAAI2019

  • SCFont: Structure-Guided Chinese Font Generation via Deep Stacked Networks
    • [paper]
    • Yue Jiang, Zhouhui Lian*, Yingmin Tang, Jianguo Xiao
    • AAAI 2019

  • Separating Style and Content for Generalized Style Transfer

    • [paper][code]
    • Yexun Zhang, Ya Zhang, Wenbin Cai
    • CVPR 2018
    • Networks
    • results
  • Deep Learning for Classical Japanese Literature

    • [paper][GitHub]
    • Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, David Ha
    • NeurIPS 2018
    • Kuzushiji-MNIST,Kuzushiji-49 and Kuzushiji-Kanji
    • Kuzushiji-MNIST
    • Kuzushiji-Kanji
  • Multi-Content GAN for Few-Shot Font Style Transfer

    • [code][paper][blog]
    • Azadi, Samaneh, Matthew Fisher, Vladimir Kim, Zhaowen Wang, Eli Shechtman, and Trevor Darrell.
    • CVPR2018
  • Learning to Write Stylized Chinese Characters by Reading a Handful of Examples

    • [paper]
    • Danyang Sun∗, Tongzheng Ren∗, Chongxuan Li, Hang Su†, Jun Zhu†
    • IJCAI 2018
    • SA-VAE

  • DCFont: An End-To-End Deep Chinese Font Generation System
    • [paper]
    • Juncheng Liu, Zhouhui Lian, Jianguo Xiao
    • SIGGRAPH Asia 2017

  • A Book from the Sky 天书: Exploring the Latent Space of Chinese Handwriting

  • Letter Spirit: An Emergent Model of the Perception and Creation of Alphabetic Style
    • [paper]
    • Douglas Hofstadter, Gary McGraw
    • 1993

Other Approach

  • Automatic Generation of Typographic Font from a Small Font Subset

    • [paper]
    • Tomo Miyazaki, Tatsunori Tsuchiya, Yoshihiro Sugaya, Shinichiro Omachi, Masakazu Iwamura, Seiichi Uchida, Koichi Kise
    • 2017

  • FlexyFont: Learning Transferring Rules for Flexible Typeface Synthesis

    • [paper]
    • H. Q. Phan, H. Fu, and A. B. Chan
    • 2015 Computer Graphics Forum

  • Awesome Typography: Statistics-Based Text Effects Transfer

    • [paper][code]
    • Shuai Yang, Jiaying Liu, Zhouhui Lian and Zongming Guo
    • CVPR 2017

  • Easy generation of personal Chinese handwritten fonts

    • [paper]
    • Baoyao Zhou, Weihong Wang, and Zhanghui Chen
    • 2011 ICME(IEEE International Conference on Multimedia and Expo)

  • Automatic shape morphing for Chinese characters

    • [paper]
    • Zhouhui Lian, and Zhouhui Lian
    • SIGGRAPH Asia 2012

Struture Learning

DataSet

  • Deep Learning for Classical Japanese Literature
    • [paper][GitHub]
    • Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, David Ha
    • NeurIPS 2018
    • Kuzushiji-MNIST,Kuzushiji-49 and Kuzushiji-Kanji
    • Kuzushiji-MNIST
    • Kuzushiji-Kanji

Other Application

  • CalliGAN: Style and Structure-aware Chinese Calligraphy Character Generator
    • [paper][code]
    • Shan-Jean Wu, Chih-Yuan Yang and Jane Yung-jen Hsu
    • AI for Content Creation Workshop CVPR 2020.

  • A Learned Representation for Scalable Vector Graphics
    • [paper]
    • Raphael Gontijo Lopes, David Ha, Douglas Eck, Jonathon Shlens
    • ICCV 2019
    • ICLR workshop 2019

  • Large-scale Tag-based Font Retrieval with Generative Feature Learning

    • [paper][page]
    • Tianlang Chen, Zhaowen Wang, Ning Xu, Hailin Jin, Jiebo Luo
    • ICCV 2019
  • DynTypo: Example-based Dynamic Text Effects Transfer

    • [paper]
    • Yifang Men, Zhouhui Lian, Yingmin Tang, Jianguo Xiao
    • CVPR 2019
    • <iframe width="560" height="315" src="https://www.youtube.com/embed/FkFQ6bV1s-o" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
  • DeepGlyph

  • Coconditional Autoencoding Adversarial Networks for Chinese Font Feature Learning

    • [paper]
    • arxiv 2018
    • Zhizhan Zheng, Feiyun Zhang
  • TET-GAN: Text Effects Transfer via Stylization and Destylization

    • [paper]
    • Shuai Yang, Jiaying Liu, Wenjing Wang, Zongming Guo
    • AAAI2019
  • SCFont: Structure-Guided Chinese Font Generation via Deep Stacked Networks

    • [paper]
    • Yue Jiang, Zhouhui Lian*, Yingmin Tang, Jianguo Xiao
    • AAAI 2019
  • Separating Style and Content for Generalized Style Transfer

    • [paper][code]
    • Yexun Zhang, Ya Zhang, Wenbin Cai
    • CVPR 2018
    • Networks
    • results
  • Deep Learning for Classical Japanese Literature

    • [paper][GitHub]
    • Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, David Ha
    • NeurIPS 2018
    • Kuzushiji-MNIST,Kuzushiji-49 and Kuzushiji-Kanji
    • Kuzushiji-MNIST
    • Kuzushiji-Kanji
  • Multi-Content GAN for Few-Shot Font Style Transfer

    • [code][paper][blog]
    • Azadi, Samaneh, Matthew Fisher, Vladimir Kim, Zhaowen Wang, Eli Shechtman, and Trevor Darrell.
    • CVPR2018
  • Learning to Write Stylized Chinese Characters by Reading a Handful of Examples

    • [paper]
    • Danyang Sun∗, Tongzheng Ren∗, Chongxuan Li, Hang Su†, Jun Zhu†
    • IJCAI 2018
    • SA-VAE
  • DCFont: An End-To-End Deep Chinese Font Generation System

    • [paper]
    • Juncheng Liu, Zhouhui Lian, Jianguo Xiao
    • SIGGRAPH Asia 2017
  • zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks

  • Rewrite: Neural Style Transfer For Chinese Fonts

  • Automatic generation of large-scale handwriting fonts via style learning

    • [paper]
    • Zhouhui Lian, Bo Zhao, and Jianguo Xiao
    • SIGGRAPH ASIA 2016

  • A Book from the Sky 天书: Exploring the Latent Space of Chinese Handwriting

  • Letter Spirit: An Emergent Model of the Perception and Creation of Alphabetic Style
    • [paper]
    • Douglas Hofstadter, Gary McGraw
    • 1993

Other Approach

  • Automatic Generation of Typographic Font from a Small Font Subset

    • [paper]
    • Tomo Miyazaki, Tatsunori Tsuchiya, Yoshihiro Sugaya, Shinichiro Omachi, Masakazu Iwamura, Seiichi Uchida, Koichi Kise
    • 2017

  • FlexyFont: Learning Transferring Rules for Flexible Typeface Synthesis

    • [paper]
    • H. Q. Phan, H. Fu, and A. B. Chan
    • 2015 Computer Graphics Forum

  • Awesome Typography: Statistics-Based Text Effects Transfer

    • [paper][code]
    • Shuai Yang, Jiaying Liu, Zhouhui Lian and Zongming Guo
    • CVPR 2017

  • Easy generation of personal Chinese handwritten fonts

    • [paper]
    • Baoyao Zhou, Weihong Wang, and Zhanghui Chen
    • 2011 ICME(IEEE International Conference on Multimedia and Expo)

  • Automatic shape morphing for Chinese characters

    • [paper]
    • Zhouhui Lian, and Zhouhui Lian
    • SIGGRAPH Asia 2012

Struture Learning

DataSet

  • Deep Learning for Classical Japanese Literature
    • [paper][GitHub]
    • Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, David Ha
    • NeurIPS 2018
    • Kuzushiji-MNIST,Kuzushiji-49 and Kuzushiji-Kanji
    • Kuzushiji-MNIST
    • Kuzushiji-Kanji

Other Application