-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrain.py
106 lines (82 loc) · 2.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import warnings
warnings.filterwarnings("ignore")
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils import data
from models.discriminator.discriminator import Discriminator
from models.generator.generator import Generator
from models.generator.vgg16 import VGG16FeatureExtractor
from options.train_options import TrainOptions
from datasets.dataset import create_image_dataset
from utils.distributed import synchronize
from utils.ddp import data_sampler
from trainer import train
opts = TrainOptions().parse
os.makedirs('{:s}'.format(opts.save_dir), exist_ok=True)
is_cuda = torch.cuda.is_available()
if is_cuda:
print('Cuda is available')
cudnn.enable = True
cudnn.benchmark = True
n_gpu = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
print('GPU number: ', n_gpu)
opts.distributed = n_gpu > 1
if opts.distributed:
torch.cuda.set_device(opts.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
synchronize()
# model & load model
generator = Generator(image_in_channels=3, edge_in_channels=2, out_channels=3)
discriminator = Discriminator(image_in_channels=3, edge_in_channels=2)
extractor = VGG16FeatureExtractor()
# cuda
if is_cuda:
generator, discriminator, extractor = generator.cuda(), discriminator.cuda(), extractor.cuda()
# optimizer
if opts.finetune == True:
print('Fine tune...')
lr = opts.lr_finetune
generator.freeze_ec_bn = True
else:
lr = opts.gen_lr
generator_optim = optim.Adam(filter(lambda p: p.requires_grad, generator.parameters()), lr=lr)
discriminator_optim = optim.Adam(discriminator.parameters(), lr=lr * opts.D2G_lr)
# load checkpoints
if opts.pre_trained != '':
ckpt_dict = torch.load(opts.pre_trained, map_location=lambda storage, loc: storage)
opts.start_iter = ckpt_dict['n_iter']
generator.load_state_dict(ckpt_dict['generator'])
discriminator.load_state_dict(ckpt_dict['discriminator'])
print('Starting from iter', opts.start_iter)
else:
print('Starting from iter', opts.start_iter)
if opts.distributed:
generator = nn.parallel.DistributedDataParallel(
generator,
device_ids=[opts.local_rank],
output_device=opts.local_rank,
broadcast_buffers=False,
)
discriminator = nn.parallel.DistributedDataParallel(
discriminator,
device_ids=[opts.local_rank],
output_device=opts.local_rank,
broadcast_buffers=False,
)
# dataset
image_dataset = create_image_dataset(opts)
print(image_dataset.__len__())
image_data_loader = data.DataLoader(
image_dataset,
batch_size=opts.batch_size,
sampler=data_sampler(
image_dataset, shuffle=True, distributed=opts.distributed
),
drop_last=True
)
# training
train(opts, image_data_loader, generator, discriminator, extractor, generator_optim, discriminator_optim, is_cuda)