-
Notifications
You must be signed in to change notification settings - Fork 0
/
transforms.py
134 lines (103 loc) · 3.73 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import random
import numpy as np
import torch
import torch.nn as nn
import torchvision.transforms as T
from torchvision.transforms import functional as F
def pad_if_smaller(img, size, fill=0):
min_size = min(img.size)
if min_size < size:
ow, oh = img.size
padh = size - oh if oh < size else 0
padw = size - ow if ow < size else 0
img = F.pad(img, (0, 0, padw, padh), fill=fill)
return img
class Compose:
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target):
for t in self.transforms:
image, target = t(image, target)
return image, target
class NumpyToTensor:
def __call__(self, image, mask):
image = T.ToTensor()(image)
mask = torch.tensor(mask, dtype=torch.int64)
return image, mask
class RandomResize:
def __init__(self, min_size, max_size=None):
self.min_size = min_size
if max_size is None:
max_size = min_size
self.max_size = max_size
def __call__(self, image, target):
size = random.randint(self.min_size, self.max_size)
image = F.resize(image, size)
target = F.resize(target, size, interpolation=T.InterpolationMode.NEAREST)
return image, target
class RandomHorizontalFlip:
def __init__(self, flip_prob):
self.flip_prob = flip_prob
def __call__(self, image, target):
if random.random() < self.flip_prob:
image = F.hflip(image)
target = F.hflip(target)
return image, target
class RandomCrop:
def __init__(self, size):
self.size = size
def __call__(self, image, target):
image = pad_if_smaller(image, self.size)
target = pad_if_smaller(target, self.size, fill=255)
crop_params = T.RandomCrop.get_params(image, (self.size, self.size))
image = F.crop(image, *crop_params)
target = F.crop(target, *crop_params)
return image, target
class RandomResizedCrop:
def __init__(self, size, scale, ratio):
self.size = size
self.ratio = ratio
self.scale = scale
def __call__(self, image, target):
crop_params = T.RandomResizedCrop.get_params(image, scale=self.scale, ratio=self.ratio)
image = F.resized_crop(image, *crop_params, size=(self.size, self.size))
target = F.resized_crop(
target.unsqueeze(0),
*crop_params,
(self.size, self.size),
interpolation=T.InterpolationMode.NEAREST
)
return image, target.squeeze(0)
class CenterCrop:
def __init__(self, size):
self.size = size
def __call__(self, image, target):
image = F.center_crop(image, self.size)
target = F.center_crop(target, self.size)
return image, target
class PILToTensor:
def __call__(self, image, target):
image = F.pil_to_tensor(image)
target = torch.as_tensor(np.array(target), dtype=torch.int64)
return image, target
class ConvertImageDtype:
def __init__(self, dtype):
self.dtype = dtype
def __call__(self, image, target):
image = F.convert_image_dtype(image, self.dtype)
return image, target
class Resize(nn.Module):
def __init__(self, size):
super().__init__()
self.size = size
def forward(self, image, target):
image = F.resize(image, self.size)
target = F.resize(target.unsqueeze(0), self.size, interpolation=T.InterpolationMode.NEAREST)
return image, target.squeeze(0)
class Normalize:
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, image, target):
image = F.normalize(image, mean=self.mean, std=self.std)
return image, target