-
Notifications
You must be signed in to change notification settings - Fork 6
/
sotabench.py
538 lines (486 loc) · 32.6 KB
/
sotabench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import torch
from sotabencheval.image_classification import ImageNetEvaluator
from sotabencheval.utils import is_server
from timm import create_model
from timm.data import resolve_data_config, create_loader, DatasetTar
from timm.models import apply_test_time_pool
from tqdm import tqdm
import os
NUM_GPU = 1
BATCH_SIZE = 256 * NUM_GPU
def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
ttp=False, args=dict(), model_desc=None):
return dict(
model=model_name,
model_description=model_desc,
paper_model_name=paper_model_name,
paper_arxiv_id=paper_arxiv_id,
batch_size=batch_size,
ttp=ttp,
args=args)
# NOTE For any original PyTorch models, I'll remove from this list when you add to sotabench to
# avoid overlap and confusion. Please contact me.
model_list = [
## Weights ported by myself from other frameworks or trained myself in PyTorch
_entry('adv_inception_v3', 'Adversarial Inception V3', '1611.01236',
model_desc='Ported from official Tensorflow weights'),
_entry('ens_adv_inception_resnet_v2', 'Ensemble Adversarial Inception V3', '1705.07204',
model_desc='Ported from official Tensorflow weights'),
_entry('dpn68', 'DPN-68 (224x224)', '1707.01629'),
_entry('dpn68b', 'DPN-68b (224x224)', '1707.01629'),
_entry('dpn92', 'DPN-92 (224x224)', '1707.01629'),
_entry('dpn98', 'DPN-98 (224x224)', '1707.01629'),
_entry('dpn107', 'DPN-107 (224x224)', '1707.01629'),
_entry('dpn131', 'DPN-131 (224x224)', '1707.01629'),
_entry('dpn68', 'DPN-68 (320x320, Mean-Max Pooling)', '1707.01629', ttp=True, args=dict(img_size=320)),
_entry('dpn68b', 'DPN-68b (320x320, Mean-Max Pooling)', '1707.01629', ttp=True, args=dict(img_size=320)),
_entry('dpn92', 'DPN-92 (320x320, Mean-Max Pooling)', '1707.01629',
ttp=True, args=dict(img_size=320), batch_size=BATCH_SIZE//2),
_entry('dpn98', 'DPN-98 (320x320, Mean-Max Pooling)', '1707.01629',
ttp=True, args=dict(img_size=320), batch_size=BATCH_SIZE//2),
_entry('dpn107', 'DPN-107 (320x320, Mean-Max Pooling)', '1707.01629',
ttp=True, args=dict(img_size=320), batch_size=BATCH_SIZE//4),
_entry('dpn131', 'DPN-131 (320x320, Mean-Max Pooling)', '1707.01629',
ttp=True, args=dict(img_size=320), batch_size=BATCH_SIZE//4),
_entry('efficientnet_b0', 'EfficientNet-B0', '1905.11946'),
_entry('efficientnet_b1', 'EfficientNet-B1', '1905.11946'),
_entry('efficientnet_b2', 'EfficientNet-B2', '1905.11946',
model_desc='Trained from scratch in PyTorch w/ RandAugment'),
_entry('efficientnet_b2a', 'EfficientNet-B2 (288x288, 1.0 crop)', '1905.11946',
model_desc='Trained from scratch in PyTorch w/ RandAugment'),
_entry('efficientnet_b3', 'EfficientNet-B3', '1905.11946',
model_desc='Trained from scratch in PyTorch w/ RandAugment'),
_entry('efficientnet_b3a', 'EfficientNet-B3 (320x320, 1.0 crop)', '1905.11946',
model_desc='Trained from scratch in PyTorch w/ RandAugment'),
_entry('efficientnet_es', 'EfficientNet-EdgeTPU-S', '1905.11946',
model_desc='Trained from scratch in PyTorch w/ RandAugment'),
_entry('efficientnet_em', 'EfficientNet-EdgeTPU-M', '1905.11946',
model_desc='Trained from scratch in PyTorch w/ RandAugment'),
_entry('gluon_inception_v3', 'Inception V3', '1512.00567', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet18_v1b', 'ResNet-18', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet34_v1b', 'ResNet-34', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet50_v1b', 'ResNet-50', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet50_v1c', 'ResNet-50-C', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet50_v1d', 'ResNet-50-D', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet50_v1s', 'ResNet-50-S', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet101_v1b', 'ResNet-101', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet101_v1c', 'ResNet-101-C', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet101_v1d', 'ResNet-101-D', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet101_v1s', 'ResNet-101-S', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet152_v1b', 'ResNet-152', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet152_v1c', 'ResNet-152-C', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet152_v1d', 'ResNet-152-D', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet152_v1s', 'ResNet-152-S', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnext50_32x4d', 'ResNeXt-50 32x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnext101_32x4d', 'ResNeXt-101 32x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnext101_64x4d', 'ResNeXt-101 64x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_senet154', 'SENet-154', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_seresnext50_32x4d', 'SE-ResNeXt-50 32x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_seresnext101_32x4d', 'SE-ResNeXt-101 32x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_seresnext101_64x4d', 'SE-ResNeXt-101 64x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_xception65', 'Modified Aligned Xception', '1802.02611', batch_size=BATCH_SIZE//2,
model_desc='Ported from GluonCV Model Zoo'),
_entry('mixnet_xl', 'MixNet-XL', '1907.09595', model_desc="My own scaling beyond paper's MixNet Large"),
_entry('mixnet_l', 'MixNet-L', '1907.09595'),
_entry('mixnet_m', 'MixNet-M', '1907.09595'),
_entry('mixnet_s', 'MixNet-S', '1907.09595'),
_entry('fbnetc_100', 'FBNet-C', '1812.03443',
model_desc='Trained in PyTorch with RMSProp, exponential LR decay'),
_entry('mnasnet_100', 'MnasNet-B1', '1807.11626'),
_entry('semnasnet_100', 'MnasNet-A1', '1807.11626'),
_entry('spnasnet_100', 'Single-Path NAS', '1904.02877',
model_desc='Trained in PyTorch with SGD, cosine LR decay'),
_entry('mobilenetv3_large_100', 'MobileNet V3-Large 1.0', '1905.02244',
model_desc='Trained in PyTorch with RMSProp, exponential LR decay, and hyper-params matching '
'paper as closely as possible.'),
_entry('resnet18', 'ResNet-18', '1812.01187'),
_entry('resnet26', 'ResNet-26', '1812.01187', model_desc='Block cfg of ResNet-34 w/ Bottleneck'),
_entry('resnet26d', 'ResNet-26-D', '1812.01187',
model_desc='Block cfg of ResNet-34 w/ Bottleneck, deep stem, and avg-pool in downsample layers.'),
_entry('resnet34', 'ResNet-34', '1812.01187'),
_entry('resnet50', 'ResNet-50', '1812.01187', model_desc='Trained with AugMix + JSD loss'),
_entry('resnet50', 'ResNet-50 (288x288 Mean-Max Pooling)', '1812.01187',
ttp=True, args=dict(img_size=288),
model_desc='Trained with AugMix + JSD loss'),
_entry('resnext50_32x4d', 'ResNeXt-50 32x4d', '1812.01187'),
_entry('resnext50d_32x4d', 'ResNeXt-50-D 32x4d', '1812.01187',
model_desc="'D' variant (3x3 deep stem w/ avg-pool downscale). Trained with "
"SGD w/ cosine LR decay, random-erasing (gaussian per-pixel noise) and label-smoothing"),
_entry('wide_resnet50_2', 'Wide-ResNet-50', '1605.07146'),
_entry('seresnet50', 'SE-ResNet-50', '1709.01507'),
_entry('seresnext26d_32x4d', 'SE-ResNeXt-26-D 32x4d', '1812.01187',
model_desc='Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep stem, and avg-pool in downsample layers.'),
_entry('seresnext26t_32x4d', 'SE-ResNeXt-26-T 32x4d', '1812.01187',
model_desc='Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep tiered stem, and avg-pool in downsample layers.'),
_entry('seresnext50_32x4d', 'SE-ResNeXt-50 32x4d', '1709.01507'),
_entry('skresnet18', 'SK-ResNet-18', '1903.06586'),
_entry('skresnet34', 'SK-ResNet-34', '1903.06586'),
_entry('skresnext50_32x4d', 'SKNet-50', '1903.06586'),
_entry('ecaresnetlight', 'ECA-ResNet-Light', '1910.03151',
model_desc='A tweaked ResNet50d with ECA attn.'),
_entry('ecaresnet50d', 'ECA-ResNet-50d', '1910.03151',
model_desc='A ResNet50d with ECA attn'),
_entry('ecaresnet101d', 'ECA-ResNet-101d', '1910.03151',
model_desc='A ResNet101d with ECA attn'),
_entry('resnetblur50', 'ResNet-Blur-50', '1904.11486'),
_entry('densenet121', 'DenseNet-121', '1608.06993'),
_entry('densenetblur121d', 'DenseNet-Blur-121D', '1904.11486',
model_desc='DenseNet with blur pooling and deep stem'),
_entry('ese_vovnet19b_dw', 'VoVNet-19-DW-V2', '1911.06667'),
_entry('ese_vovnet39b', 'VoVNet-39-V2', '1911.06667'),
_entry('cspresnet50', 'CSPResNet-50', '1911.11929'),
_entry('cspresnext50', 'CSPResNeXt-50', '1911.11929'),
_entry('cspdarknet53', 'CSPDarkNet-53', '1911.11929'),
_entry('tf_efficientnet_b0', 'EfficientNet-B0 (AutoAugment)', '1905.11946',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b1', 'EfficientNet-B1 (AutoAugment)', '1905.11946',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b2', 'EfficientNet-B2 (AutoAugment)', '1905.11946',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b3', 'EfficientNet-B3 (AutoAugment)', '1905.11946', batch_size=BATCH_SIZE//2,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b4', 'EfficientNet-B4 (AutoAugment)', '1905.11946', batch_size=BATCH_SIZE//2,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b5', 'EfficientNet-B5 (RandAugment)', '1905.11946', batch_size=BATCH_SIZE//4,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b6', 'EfficientNet-B6 (AutoAugment)', '1905.11946', batch_size=BATCH_SIZE//8,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b7', 'EfficientNet-B7 (RandAugment)', '1905.11946', batch_size=BATCH_SIZE//8,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b8', 'EfficientNet-B8 (RandAugment)', '1905.11946', batch_size=BATCH_SIZE // 8,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b0_ap', 'EfficientNet-B0 (AdvProp)', '1911.09665',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b1_ap', 'EfficientNet-B1 (AdvProp)', '1911.09665',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b2_ap', 'EfficientNet-B2 (AdvProp)', '1911.09665',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b3_ap', 'EfficientNet-B3 (AdvProp)', '1911.09665', batch_size=BATCH_SIZE // 2,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b4_ap', 'EfficientNet-B4 (AdvProp)', '1911.09665', batch_size=BATCH_SIZE // 2,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b5_ap', 'EfficientNet-B5 (AdvProp)', '1911.09665', batch_size=BATCH_SIZE // 4,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b6_ap', 'EfficientNet-B6 (AdvProp)', '1911.09665', batch_size=BATCH_SIZE // 8,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b7_ap', 'EfficientNet-B7 (AdvProp)', '1911.09665', batch_size=BATCH_SIZE // 8,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b8_ap', 'EfficientNet-B8 (AdvProp)', '1911.09665', batch_size=BATCH_SIZE // 8,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b0_ns', 'EfficientNet-B0 (NoisyStudent)', '1911.04252',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b1_ns', 'EfficientNet-B1 (NoisyStudent)', '1911.04252',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b2_ns', 'EfficientNet-B2 (NoisyStudent)', '1911.04252',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b3_ns', 'EfficientNet-B3 (NoisyStudent)', '1911.04252', batch_size=BATCH_SIZE // 2,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b4_ns', 'EfficientNet-B4 (NoisyStudent)', '1911.04252', batch_size=BATCH_SIZE // 2,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b5_ns', 'EfficientNet-B5 (NoisyStudent)', '1911.04252', batch_size=BATCH_SIZE // 4,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b6_ns', 'EfficientNet-B6 (NoisyStudent)', '1911.04252', batch_size=BATCH_SIZE // 8,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b7_ns', 'EfficientNet-B7 (NoisyStudent)', '1911.04252', batch_size=BATCH_SIZE // 8,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_l2_ns_475', 'EfficientNet-L2 475 (NoisyStudent)', '1911.04252', batch_size=BATCH_SIZE // 16,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_l2_ns', 'EfficientNet-L2 (NoisyStudent)', '1911.04252', batch_size=BATCH_SIZE // 64,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_cc_b0_4e', 'EfficientNet-CondConv-B0 4 experts', '1904.04971',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_cc_b0_8e', 'EfficientNet-CondConv-B0 8 experts', '1904.04971',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_cc_b1_8e', 'EfficientNet-CondConv-B1 8 experts', '1904.04971',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_es', 'EfficientNet-EdgeTPU-S', '1905.11946',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_em', 'EfficientNet-EdgeTPU-M', '1905.11946',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_el', 'EfficientNet-EdgeTPU-L', '1905.11946', batch_size=BATCH_SIZE//2,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_lite0', 'EfficientNet-Lite0', '1905.11946',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_lite1', 'EfficientNet-Lite1', '1905.11946',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_lite2', 'EfficientNet-Lite2', '1905.11946',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_lite3', 'EfficientNet-Lite3', '1905.11946', batch_size=BATCH_SIZE // 2,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_lite4', 'EfficientNet-Lite4', '1905.11946', batch_size=BATCH_SIZE // 2,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_inception_v3', 'Inception V3', '1512.00567', model_desc='Ported from official Tensorflow weights'),
_entry('tf_mixnet_l', 'MixNet-L', '1907.09595', model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_mixnet_m', 'MixNet-M', '1907.09595', model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_mixnet_s', 'MixNet-S', '1907.09595', model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_mobilenetv3_large_100', 'MobileNet V3-Large 1.0', '1905.02244',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_mobilenetv3_large_075', 'MobileNet V3-Large 0.75', '1905.02244',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_mobilenetv3_large_minimal_100', 'MobileNet V3-Large Minimal 1.0', '1905.02244',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_mobilenetv3_small_100', 'MobileNet V3-Small 1.0', '1905.02244',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_mobilenetv3_small_075', 'MobileNet V3-Small 0.75', '1905.02244',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_mobilenetv3_small_minimal_100', 'MobileNet V3-Small Minimal 1.0', '1905.02244',
model_desc='Ported from official Google AI Tensorflow weights'),
## Cadene ported weights (to remove if Cadene adds sotabench)
_entry('inception_resnet_v2', 'Inception ResNet V2', '1602.07261'),
_entry('inception_v4', 'Inception V4', '1602.07261'),
_entry('nasnetalarge', 'NASNet-A Large', '1707.07012', batch_size=BATCH_SIZE // 4),
_entry('pnasnet5large', 'PNASNet-5', '1712.00559', batch_size=BATCH_SIZE // 4),
_entry('xception', 'Xception', '1610.02357', batch_size=BATCH_SIZE//2),
_entry('legacy_seresnet18', 'SE-ResNet-18', '1709.01507'),
_entry('legacy_seresnet34', 'SE-ResNet-34', '1709.01507'),
_entry('legacy_seresnet50', 'SE-ResNet-50', '1709.01507'),
_entry('legacy_seresnet101', 'SE-ResNet-101', '1709.01507'),
_entry('legacy_seresnet152', 'SE-ResNet-152', '1709.01507'),
_entry('legacy_seresnext26_32x4d', 'SE-ResNeXt-26 32x4d', '1709.01507',
model_desc='Block cfg of SE-ResNeXt-34 w/ Bottleneck'),
_entry('legacy_seresnext50_32x4d', 'SE-ResNeXt-50 32x4d', '1709.01507'),
_entry('legacy_seresnext101_32x4d', 'SE-ResNeXt-101 32x4d', '1709.01507'),
_entry('legacy_senet154', 'SENet-154', '1709.01507'),
## Torchvision weights
# _entry('densenet121'),
# _entry('densenet161'),
# _entry('densenet169'),
# _entry('densenet201'),
# _entry('inception_v3', paper_model_name='Inception V3', ),
# _entry('tv_resnet34', , ),
# _entry('tv_resnet50', , ),
# _entry('resnet101', , ),
# _entry('resnet152', , ),
# _entry('tv_resnext50_32x4d', , ),
# _entry('resnext101_32x8d', ),
# _entry('wide_resnet50_2' , ),
# _entry('wide_resnet101_2', , ),
## Facebook WSL weights
_entry('ig_resnext101_32x8d', 'ResNeXt-101 32x8d', '1805.00932',
model_desc='Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research'),
_entry('ig_resnext101_32x16d', 'ResNeXt-101 32x16d', '1805.00932',
model_desc='Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research'),
_entry('ig_resnext101_32x32d', 'ResNeXt-101 32x32d', '1805.00932', batch_size=BATCH_SIZE // 2,
model_desc='Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research'),
_entry('ig_resnext101_32x48d', 'ResNeXt-101 32x48d', '1805.00932', batch_size=BATCH_SIZE // 4,
model_desc='Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research'),
_entry('ig_resnext101_32x8d', 'ResNeXt-101 32x8d (288x288 Mean-Max Pooling)', '1805.00932',
ttp=True, args=dict(img_size=288),
model_desc='Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research'),
_entry('ig_resnext101_32x16d', 'ResNeXt-101 32x16d (288x288 Mean-Max Pooling)', '1805.00932',
ttp=True, args=dict(img_size=288), batch_size=BATCH_SIZE // 2,
model_desc='Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research'),
_entry('ig_resnext101_32x32d', 'ResNeXt-101 32x32d (288x288 Mean-Max Pooling)', '1805.00932',
ttp=True, args=dict(img_size=288), batch_size=BATCH_SIZE // 4,
model_desc='Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research'),
_entry('ig_resnext101_32x48d', 'ResNeXt-101 32x48d (288x288 Mean-Max Pooling)', '1805.00932',
ttp=True, args=dict(img_size=288), batch_size=BATCH_SIZE // 8,
model_desc='Weakly-Supervised pre-training on 1B Instagram hashtag dataset by Facebook Research'),
## Facebook SSL weights
_entry('ssl_resnet18', 'ResNet-18', '1905.00546',
model_desc='Semi-Supervised pre-training on YFCC100M dataset by Facebook Research'),
_entry('ssl_resnet50', 'ResNet-50', '1905.00546',
model_desc='Semi-Supervised pre-training on YFCC100M dataset by Facebook Research'),
_entry('ssl_resnext50_32x4d', 'ResNeXt-50 32x4d', '1905.00546',
model_desc='Semi-Supervised pre-training on YFCC100M dataset by Facebook Research'),
_entry('ssl_resnext101_32x4d', 'ResNeXt-101 32x4d', '1905.00546',
model_desc='Semi-Supervised pre-training on YFCC100M dataset by Facebook Research'),
_entry('ssl_resnext101_32x8d', 'ResNeXt-101 32x8d', '1905.00546',
model_desc='Semi-Supervised pre-training on YFCC100M dataset by Facebook Research'),
_entry('ssl_resnext101_32x16d', 'ResNeXt-101 32x16d', '1905.00546',
model_desc='Semi-Supervised pre-training on YFCC100M dataset by Facebook Research'),
_entry('ssl_resnet50', 'ResNet-50 (288x288 Mean-Max Pooling)', '1905.00546',
ttp=True, args=dict(img_size=288),
model_desc='Semi-Supervised pre-training on YFCC100M dataset by Facebook Research'),
_entry('ssl_resnext50_32x4d', 'ResNeXt-50 32x4d (288x288 Mean-Max Pooling)', '1905.00546',
ttp=True, args=dict(img_size=288),
model_desc='Semi-Supervised pre-training on YFCC100M dataset by Facebook Research'),
_entry('ssl_resnext101_32x4d', 'ResNeXt-101 32x4d (288x288 Mean-Max Pooling)', '1905.00546',
ttp=True, args=dict(img_size=288),
model_desc='Semi-Supervised pre-training on YFCC100M dataset by Facebook Research'),
_entry('ssl_resnext101_32x8d', 'ResNeXt-101 32x8d (288x288 Mean-Max Pooling)', '1905.00546',
ttp=True, args=dict(img_size=288),
model_desc='Semi-Supervised pre-training on YFCC100M dataset by Facebook Research'),
_entry('ssl_resnext101_32x16d', 'ResNeXt-101 32x16d (288x288 Mean-Max Pooling)', '1905.00546',
ttp=True, args=dict(img_size=288), batch_size=BATCH_SIZE // 2,
model_desc='Semi-Supervised pre-training on YFCC100M dataset by Facebook Research'),
## Facebook SWSL weights
_entry('swsl_resnet18', 'ResNet-18', '1905.00546',
model_desc='Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research'),
_entry('swsl_resnet50', 'ResNet-50', '1905.00546',
model_desc='Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research'),
_entry('swsl_resnext50_32x4d', 'ResNeXt-50 32x4d', '1905.00546',
model_desc='Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research'),
_entry('swsl_resnext101_32x4d', 'ResNeXt-101 32x4d', '1905.00546',
model_desc='Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research'),
_entry('swsl_resnext101_32x8d', 'ResNeXt-101 32x8d', '1905.00546',
model_desc='Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research'),
_entry('swsl_resnext101_32x16d', 'ResNeXt-101 32x16d', '1905.00546',
model_desc='Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research'),
_entry('swsl_resnet50', 'ResNet-50 (288x288 Mean-Max Pooling)', '1905.00546',
ttp=True, args=dict(img_size=288),
model_desc='Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research'),
_entry('swsl_resnext50_32x4d', 'ResNeXt-50 32x4d (288x288 Mean-Max Pooling)', '1905.00546',
ttp=True, args=dict(img_size=288),
model_desc='Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research'),
_entry('swsl_resnext101_32x4d', 'ResNeXt-101 32x4d (288x288 Mean-Max Pooling)', '1905.00546',
ttp=True, args=dict(img_size=288),
model_desc='Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research'),
_entry('swsl_resnext101_32x8d', 'ResNeXt-101 32x8d (288x288 Mean-Max Pooling)', '1905.00546',
ttp=True, args=dict(img_size=288),
model_desc='Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research'),
_entry('swsl_resnext101_32x16d', 'ResNeXt-101 32x16d (288x288 Mean-Max Pooling)', '1905.00546',
ttp=True, args=dict(img_size=288), batch_size=BATCH_SIZE // 2,
model_desc='Semi-Weakly-Supervised pre-training on 1 billion unlabelled dataset by Facebook Research'),
## DLA official impl weights (to remove if sotabench added to source)
_entry('dla34', 'DLA-34', '1707.06484'),
_entry('dla46_c', 'DLA-46-C', '1707.06484'),
_entry('dla46x_c', 'DLA-X-46-C', '1707.06484'),
_entry('dla60x_c', 'DLA-X-60-C', '1707.06484'),
_entry('dla60', 'DLA-60', '1707.06484'),
_entry('dla60x', 'DLA-X-60', '1707.06484'),
_entry('dla102', 'DLA-102', '1707.06484'),
_entry('dla102x', 'DLA-X-102', '1707.06484'),
_entry('dla102x2', 'DLA-X-102 64', '1707.06484'),
_entry('dla169', 'DLA-169', '1707.06484'),
## Res2Net official impl weights (to remove if sotabench added to source)
_entry('res2net50_26w_4s', 'Res2Net-50 26x4s', '1904.01169'),
_entry('res2net50_14w_8s', 'Res2Net-50 14x8s', '1904.01169'),
_entry('res2net50_26w_6s', 'Res2Net-50 26x6s', '1904.01169'),
_entry('res2net50_26w_8s', 'Res2Net-50 26x8s', '1904.01169'),
_entry('res2net50_48w_2s', 'Res2Net-50 48x2s', '1904.01169'),
_entry('res2net101_26w_4s', 'Res2NeXt-101 26x4s', '1904.01169'),
_entry('res2next50', 'Res2NeXt-50', '1904.01169'),
_entry('dla60_res2net', 'Res2Net-DLA-60', '1904.01169'),
_entry('dla60_res2next', 'Res2NeXt-DLA-60', '1904.01169'),
## HRNet official impl weights
_entry('hrnet_w18_small', 'HRNet-W18-C-Small-V1', '1908.07919'),
_entry('hrnet_w18_small_v2', 'HRNet-W18-C-Small-V2', '1908.07919'),
_entry('hrnet_w18', 'HRNet-W18-C', '1908.07919'),
_entry('hrnet_w30', 'HRNet-W30-C', '1908.07919'),
_entry('hrnet_w32', 'HRNet-W32-C', '1908.07919'),
_entry('hrnet_w40', 'HRNet-W40-C', '1908.07919'),
_entry('hrnet_w44', 'HRNet-W44-C', '1908.07919'),
_entry('hrnet_w48', 'HRNet-W48-C', '1908.07919'),
_entry('hrnet_w64', 'HRNet-W64-C', '1908.07919'),
## SelecSLS official impl weights
_entry('selecsls42b', 'SelecSLS-42_B', '1907.00837',
model_desc='Originally from https://github.com/mehtadushy/SelecSLS-Pytorch'),
_entry('selecsls60', 'SelecSLS-60', '1907.00837',
model_desc='Originally from https://github.com/mehtadushy/SelecSLS-Pytorch'),
_entry('selecsls60b', 'SelecSLS-60_B', '1907.00837',
model_desc='Originally from https://github.com/mehtadushy/SelecSLS-Pytorch'),
## ResNeSt official impl weights
_entry('resnest14d', 'ResNeSt-14', '2004.08955',
model_desc='Originally from GluonCV'),
_entry('resnest26d', 'ResNeSt-26', '2004.08955',
model_desc='Originally from GluonCV'),
_entry('resnest50d', 'ResNeSt-50', '2004.08955',
model_desc='Originally from https://github.com/zhanghang1989/ResNeSt'),
_entry('resnest101e', 'ResNeSt-101', '2004.08955',
model_desc='Originally from https://github.com/zhanghang1989/ResNeSt'),
_entry('resnest200e', 'ResNeSt-200', '2004.08955',
model_desc='Originally from https://github.com/zhanghang1989/ResNeSt'),
_entry('resnest269e', 'ResNeSt-269', '2004.08955', batch_size=BATCH_SIZE // 2,
model_desc='Originally from https://github.com/zhanghang1989/ResNeSt'),
_entry('resnest50d_4s2x40d', 'ResNeSt-50 4s2x40d', '2004.08955',
model_desc='Originally from https://github.com/zhanghang1989/ResNeSt'),
_entry('resnest50d_1s4x24d', 'ResNeSt-50 1s4x24d', '2004.08955',
model_desc='Originally from https://github.com/zhanghang1989/ResNeSt'),
## RegNet official impl weighs
_entry('regnetx_002', 'RegNetX-200MF', '2003.13678'),
_entry('regnetx_004', 'RegNetX-400MF', '2003.13678'),
_entry('regnetx_006', 'RegNetX-600MF', '2003.13678'),
_entry('regnetx_008', 'RegNetX-800MF', '2003.13678'),
_entry('regnetx_016', 'RegNetX-1.6GF', '2003.13678'),
_entry('regnetx_032', 'RegNetX-3.2GF', '2003.13678'),
_entry('regnetx_040', 'RegNetX-4.0GF', '2003.13678'),
_entry('regnetx_064', 'RegNetX-6.4GF', '2003.13678'),
_entry('regnetx_080', 'RegNetX-8.0GF', '2003.13678'),
_entry('regnetx_120', 'RegNetX-12GF', '2003.13678'),
_entry('regnetx_160', 'RegNetX-16GF', '2003.13678'),
_entry('regnetx_320', 'RegNetX-32GF', '2003.13678', batch_size=BATCH_SIZE // 2),
_entry('regnety_002', 'RegNetY-200MF', '2003.13678'),
_entry('regnety_004', 'RegNetY-400MF', '2003.13678'),
_entry('regnety_006', 'RegNetY-600MF', '2003.13678'),
_entry('regnety_008', 'RegNetY-800MF', '2003.13678'),
_entry('regnety_016', 'RegNetY-1.6GF', '2003.13678'),
_entry('regnety_032', 'RegNetY-3.2GF', '2003.13678'),
_entry('regnety_040', 'RegNetY-4.0GF', '2003.13678'),
_entry('regnety_064', 'RegNetY-6.4GF', '2003.13678'),
_entry('regnety_080', 'RegNetY-8.0GF', '2003.13678'),
_entry('regnety_120', 'RegNetY-12GF', '2003.13678'),
_entry('regnety_160', 'RegNetY-16GF', '2003.13678'),
_entry('regnety_320', 'RegNetY-32GF', '2003.13678', batch_size=BATCH_SIZE // 2),
_entry('rexnet_100', 'ReXNet-1.0x', '2007.00992'),
_entry('rexnet_130', 'ReXNet-1.3x', '2007.00992'),
_entry('rexnet_150', 'ReXNet-1.5x', '2007.00992'),
_entry('rexnet_200', 'ReXNet-2.0x', '2007.00992'),
_entry('vit_small_patch16_224', 'ViT-S/16', None),
_entry('vit_base_patch16_224', 'ViT-B/16', None),
]
if is_server():
DATA_ROOT = './.data/vision/imagenet'
else:
# local settings
DATA_ROOT = './'
DATA_FILENAME = 'ILSVRC2012_img_val.tar'
TAR_PATH = os.path.join(DATA_ROOT, DATA_FILENAME)
for m in model_list:
model_name = m['model']
# create model from name
model = create_model(model_name, pretrained=True)
param_count = sum([m.numel() for m in model.parameters()])
print('Model %s, %s created. Param count: %d' % (model_name, m['paper_model_name'], param_count))
dataset = DatasetTar(TAR_PATH)
filenames = [os.path.splitext(f)[0] for f in dataset.filenames()]
# get appropriate transform for model's default pretrained config
data_config = resolve_data_config(m['args'], model=model, verbose=True)
test_time_pool = False
if m['ttp']:
model, test_time_pool = apply_test_time_pool(model, data_config)
data_config['crop_pct'] = 1.0
batch_size = m['batch_size']
loader = create_loader(
dataset,
input_size=data_config['input_size'],
batch_size=batch_size,
use_prefetcher=True,
interpolation=data_config['interpolation'],
mean=data_config['mean'],
std=data_config['std'],
num_workers=6,
crop_pct=data_config['crop_pct'],
pin_memory=True)
evaluator = ImageNetEvaluator(
root=DATA_ROOT,
model_name=m['paper_model_name'],
paper_arxiv_id=m['paper_arxiv_id'],
model_description=m.get('model_description', None),
)
model.cuda()
model.eval()
with torch.no_grad():
# warmup
input = torch.randn((batch_size,) + data_config['input_size']).cuda()
model(input)
bar = tqdm(desc="Evaluation", mininterval=5, total=50000)
evaluator.reset_time()
sample_count = 0
for input, target in loader:
output = model(input)
num_samples = len(output)
image_ids = [filenames[i] for i in range(sample_count, sample_count + num_samples)]
output = output.cpu().numpy()
evaluator.add(dict(zip(image_ids, list(output))))
sample_count += num_samples
bar.update(num_samples)
if evaluator.cache_exists:
break
bar.close()
evaluator.save()
for k, v in evaluator.results.items():
print(k, v)
for k, v in evaluator.speed_mem_metrics.items():
print(k, v)
torch.cuda.empty_cache()