You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
i find the reason :
cv2.imwrite(str(test_real_dir)+'/{:05}.png'.format(img_idx),img)
cv2.imwrite(str(test_img)+'/{:05}.png'.format(img_idx),img)
cv2.imwrite(str(test_label)+'/{:05}.png'.format(img_idx),label)
i find the reason :
cv2.imwrite(str(test_real_dir)+'/{:05}.png'.format(img_idx),img)
cv2.imwrite(str(test_img)+'/{:05}.png'.format(img_idx),img)
cv2.imwrite(str(test_label)+'/{:05}.png'.format(img_idx),label)
because my gpu memory is only 4G so I train_pose2vid.py fineSize= 96 loadSize=96
but i can't find face when i python prepare.py
Prepare test_real....
100%|███████████████████████████████████████████████████████████████████████████████████| 166/166 [00:05<00:00, 29.95it/s]
Prepare test_sync....
CustomDatasetDataLoader
dataset [AlignedDataset] was created
GlobalGenerator(
(model): Sequential(
(0): ReflectionPad2d((3, 3, 3, 3))
(1): Conv2d(18, 64, kernel_size=(7, 7), stride=(1, 1))
(2): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(3): ReLU(inplace)
(4): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(5): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(6): ReLU(inplace)
(7): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(8): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(9): ReLU(inplace)
(10): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(11): InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(12): ReLU(inplace)
(13): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
(14): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(15): ReLU(inplace)
(16): ResnetBlock(
(conv_block): Sequential(
(0): ReflectionPad2d((1, 1, 1, 1))
(1): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(2): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(3): ReLU(inplace)
(4): ReflectionPad2d((1, 1, 1, 1))
(5): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(6): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
)
)
(17): ResnetBlock(
(conv_block): Sequential(
(0): ReflectionPad2d((1, 1, 1, 1))
(1): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(2): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(3): ReLU(inplace)
(4): ReflectionPad2d((1, 1, 1, 1))
(5): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(6): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
)
)
(18): ResnetBlock(
(conv_block): Sequential(
(0): ReflectionPad2d((1, 1, 1, 1))
(1): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(2): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(3): ReLU(inplace)
(4): ReflectionPad2d((1, 1, 1, 1))
(5): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(6): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
)
)
(19): ResnetBlock(
(conv_block): Sequential(
(0): ReflectionPad2d((1, 1, 1, 1))
(1): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(2): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(3): ReLU(inplace)
(4): ReflectionPad2d((1, 1, 1, 1))
(5): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(6): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
)
)
(20): ResnetBlock(
(conv_block): Sequential(
(0): ReflectionPad2d((1, 1, 1, 1))
(1): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(2): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(3): ReLU(inplace)
(4): ReflectionPad2d((1, 1, 1, 1))
(5): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(6): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
)
)
(21): ResnetBlock(
(conv_block): Sequential(
(0): ReflectionPad2d((1, 1, 1, 1))
(1): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(2): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(3): ReLU(inplace)
(4): ReflectionPad2d((1, 1, 1, 1))
(5): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(6): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
)
)
(22): ResnetBlock(
(conv_block): Sequential(
(0): ReflectionPad2d((1, 1, 1, 1))
(1): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(2): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(3): ReLU(inplace)
(4): ReflectionPad2d((1, 1, 1, 1))
(5): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(6): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
)
)
(23): ResnetBlock(
(conv_block): Sequential(
(0): ReflectionPad2d((1, 1, 1, 1))
(1): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(2): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(3): ReLU(inplace)
(4): ReflectionPad2d((1, 1, 1, 1))
(5): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(6): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
)
)
(24): ResnetBlock(
(conv_block): Sequential(
(0): ReflectionPad2d((1, 1, 1, 1))
(1): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(2): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(3): ReLU(inplace)
(4): ReflectionPad2d((1, 1, 1, 1))
(5): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1))
(6): InstanceNorm2d(1024, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
)
)
(25): ConvTranspose2d(1024, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(26): InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(27): ReLU(inplace)
(28): ConvTranspose2d(512, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(29): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(30): ReLU(inplace)
(31): ConvTranspose2d(256, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(32): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(33): ReLU(inplace)
(34): ConvTranspose2d(128, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1))
(35): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(36): ReLU(inplace)
(37): ReflectionPad2d((3, 3, 3, 3))
(38): Conv2d(64, 3, kernel_size=(7, 7), stride=(1, 1))
(39): Tanh()
)
)
0it [00:00, ?it/s]
Copy the synthesized images...
0it [00:00, ?it/s]
The text was updated successfully, but these errors were encountered: