-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathEx10Spec.scala
284 lines (247 loc) · 9.27 KB
/
Ex10Spec.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
package matrix
import math.aliases.*
import math.{HEq, One, Zero}
import matrix.numbers.fractions.{*, given}
import org.apache.commons.math3.fraction.{BigFraction, Fraction}
import org.scalatest.flatspec.AnyFlatSpec
import org.scalatest.matchers.should.Matchers
class Ex10Spec extends AnyFlatSpec with Matchers:
"Matrix.rowEchelon" should "return zero matrix for zero matrix" in {
val matrix11: Matrix[1, 1, Fraction] = Matrix {
Vector.of(
Vector.of(0)
)
}.toFraction
matrix11.rowEchelon shouldBe matrix11
val matrix21: Matrix[2, 1, Fraction] = Matrix {
Vector.of(
Vector.of(0),
Vector.of(0),
)
}.toFraction
matrix21.rowEchelon shouldBe matrix21
val matrix23: Matrix[2, 3, Fraction] = Matrix {
Vector.of(
Vector.of(0, 0, 0),
Vector.of(0, 0, 0),
)
}.toFraction
matrix23.rowEchelon shouldBe matrix23
}
it should "return 1 matrix if it contains only one non-zero number" in {
val matrix1: Matrix[1, 1, Fraction] = Matrix.diagonal(Fraction.ONE)
matrix1.rowEchelon shouldBe matrix1
val matrix3: Matrix[1, 1, Fraction] = Matrix.diagonal(Fraction(3))
matrix3.rowEchelon shouldBe matrix1
val matrixR: Matrix[1, 1, Fraction] = Matrix.diagonal(Fraction(-3, 7))
matrixR.rowEchelon shouldBe matrix1
}
it should "return the Identity matrix for diagonal matrices" in {
val matrix44: Matrix[4, 4, Fraction] = Matrix {
Vector.of(
Vector.of(2, 0, 0, 0),
Vector.of(0, 5, 0, 0),
Vector.of(0, 0, 1, 0),
Vector.of(0, 0, 0, -9),
)
}.toFraction
matrix44.rowEchelon shouldBe Matrix.identity[4, Fraction]
}
it should "return the same matrix if the left part of matrix is Identity" in {
val matrix34: Matrix[3, 4, Fraction] = Matrix {
Vector.of(
Vector.of(1, 0, 0, -4),
Vector.of(0, 1, 0, 19),
Vector.of(0, 0, 1, 3),
)
}.toFraction
matrix34.rowEchelon shouldBe matrix34
val matrix36: Matrix[3, 6, Fraction] = Matrix {
Vector.of(
Vector.of(1, 0, 0, -4, 9, 1),
Vector.of(0, 1, 0, 19, 0, -5),
Vector.of(0, 0, 1, 3, 4, 1),
)
}.toFraction
matrix36.rowEchelon shouldBe matrix36
}
it should "return correct matrix for wiki example" in {
// wiki: https://en.wikipedia.org/wiki/Gaussian_elimination
val matrix1: Matrix[3, 4, Fraction] = Matrix {
Vector.of(
Vector.of(1, 3, 1, 9),
Vector.of(1, 1, -1, 1),
Vector.of(3, 11, 5, 35),
)
}.toFraction
val expected1: Matrix[3, 4, Fraction] = Matrix {
Vector.of(
Vector.of(1, 0, -2, -3),
Vector.of(0, 1, 1, 4),
Vector.of(0, 0, 0, 0),
)
}.toFraction
matrix1.rowEchelon shouldBe expected1
// wiki: https://en.wikipedia.org/wiki/Gaussian_elimination#Example_of_the_algorithm
val matrix2: Matrix[3, 4, Fraction] = Matrix {
Vector.of(
Vector.of(2, 1, -1, 8),
Vector.of(-3, -1, 2, -11),
Vector.of(-2, 1, 2, -3),
)
}.toFraction
val expected2: Matrix[3, 4, Fraction] = Matrix {
Vector.of(
Vector.of(1, 0, 0, 2),
Vector.of(0, 1, 0, 3),
Vector.of(0, 0, 1, -1),
)
}.toFraction
matrix2.rowEchelon shouldBe expected2
}
it should "return matrix with correctly skipped zero first column" in {
val matrix1: Matrix[3, 4, Fraction] = Matrix {
Vector.of(
Vector.of(0, 2, 3, 4),
Vector.of(0, 6, 7, 8),
Vector.of(0, 3, 2, 1),
)
}.toFraction
val expected1: Matrix[3, 4, Fraction] = Matrix {
Vector.of(
Vector.of(0, 1, 0, -1),
Vector.of(0, 0, 1, 2),
Vector.of(0, 0, 0, 0),
)
}.toFraction
matrix1.rowEchelon shouldBe expected1
}
it should "return matrix with correctly processed columns between zeroed ones" in {
val matrix1: Matrix[3, 9, Fraction] = Matrix {
Vector.of(
Vector.of(1, 2, 3, 4, 5, 6, 7, 8, 9),
Vector.of(0, 0, 0, 1, 2, 3, 4, 5, 6),
Vector.of(0, 0, 0, 0, 0, 0, 1, 2, 3),
)
}.toFraction
val expected1: Matrix[3, 9, Fraction] = Matrix {
Vector.of(
Vector.of(1, 2, 3, 0, -3, -6, 0, 6, 12),
Vector.of(0, 0, 0, 1, 2, 3, 0, -3, -6),
Vector.of(0, 0, 0, 0, 0, 0, 1, 2, 3),
)
}.toFraction
matrix1.rowEchelon shouldBe expected1
}
it should "return correct result for matrix where height is bigger than width" in {
val matrix53: Matrix[5, 3, Fraction] = Matrix {
Vector.of(
Vector.of(1, 2, 3),
Vector.of(4, 5, 6),
Vector.of(7, 8, 9),
Vector.of(-1, -2, -3),
Vector.of(-4, -5, -6),
)
}.toFraction
val expected53: Matrix[5, 3, Fraction] = Matrix {
Vector.of(
Vector.of(1, 0, -1),
Vector.of(0, 1, 2),
Vector.of(0, 0, 0),
Vector.of(0, 0, 0),
Vector.of(0, 0, 0),
)
}.toFraction
matrix53.rowEchelon shouldBe expected53
}
it should "return correct matrix for 1 to 110 matrix" in {
val matrix1: Matrix[10, 11, Fraction] = Matrix {
Vector.of(
Vector.of(2, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11),
Vector.of(12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22),
Vector.of(23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33),
Vector.of(34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44),
Vector.of(45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55),
Vector.of(56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66),
Vector.of(67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77),
Vector.of(78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88),
Vector.of(89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99),
Vector.of(100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110),
)
}.toFraction
val expected1: Matrix[10, 11, Fraction] = Matrix {
Vector.of(
Vector.of(F(1), F(0), F(0), F(-1, 3), F(-2, 3), F(-1), F(-4, 3), F(-5, 3), F(-2), F(-7, 3), F(-8, 3)),
Vector.of(F(0), F(1), F(0), F(-1, 3), F(-2, 3), F(-1), F(-4, 3), F(-5, 3), F(-2), F(-7, 3), F(-8, 3)),
Vector.of(F(0), F(0), F(1), F(5, 3), F(7, 3), F(3), F(11, 3), F(13, 3), F(5), F(17, 3), F(19, 3)),
Vector.of(F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0)),
Vector.of(F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0)),
Vector.of(F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0)),
Vector.of(F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0)),
Vector.of(F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0)),
Vector.of(F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0)),
Vector.of(F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0), F(0)),
)
}
matrix1.rowEchelon shouldBe expected1
}
it should "return correct matrix for random big matrix" in {
val matrix: Matrix[5, 7, BigFraction] = Matrix {
Vector.of(
Vector.of(0, 1, -5, 0, 9, 52, -90),
Vector.of(14, 5, 91, 1, 51, 51, 36),
Vector.of(-12, 3, 3, 11, 83, 9, 2),
Vector.of(3, -5, 0, 0, -1, -15, 3),
Vector.of(41, -19, 20, 9, 58, 10, -32),
)
}.toBigFraction
val expected: Matrix[5, 7, BigFraction] = Matrix {
Vector.of(
Vector.of(B(1), B(0), B(0), B(0), B(0), B(3429493, 1013368), B(-4514069, 1013368)),
Vector.of(B(0), B(1), B(0), B(0), B(0), B(4268205, 1013368), B(-1857781, 1013368)),
Vector.of(B(0), B(0), B(1), B(0), B(0), B(-2219033, 1013368), B(4740937, 1013368)),
Vector.of(B(0), B(0), B(0), B(1), B(0), B(-13643415, 506684), B(24752779, 506684)),
Vector.of(B(0), B(0), B(0), B(0), B(1), B(2073987, 506684), B(-3646703, 506684)),
)
}
matrix.rowEchelon shouldBe expected
}
it should "make as less calculations as posible" in {
case class Complexity[A](value: A)
object Complexity:
var divCounter: Int = 0
var mulCounter: Int = 0
var subCounter: Int = 0
given [A: Eq]: Eq[Complexity[A]] = (a, b) => a.value == b.value
given [A: Zero]: Zero[Complexity[A]] = Zero(Complexity(Zero.of[A]))
given [A: One]: One[Complexity[A]] = One(Complexity(One.of[A]))
import math.syntax.*
given [A: Div]: Div[Complexity[A]] =
(a1, a2) =>
divCounter += 1
Complexity(a1.value / a2.value)
given [A: Mul]: Mul[Complexity[A]] =
(a1, a2) =>
mulCounter += 1
Complexity(a1.value * a2.value)
given [A: Sub]: Sub[Complexity[A]] =
(a1, a2) =>
subCounter += 1
Complexity(a1.value - a2.value)
// wiki: https://en.wikipedia.org/wiki/Gaussian_elimination#Example_of_the_algorithm
val matrix2: Matrix[3, 4, Complexity[Fraction]] = Matrix {
Vector.of(
Vector.of(2, 1, -1, 8),
Vector.of(-3, -1, 2, -11),
Vector.of(-2, 1, 2, -3),
)
}.toFraction.map(Complexity(_))
val result = matrix2.rowEchelon
val N = 3
// wiki: https://en.wikipedia.org/wiki/Gaussian_elimination#Computational_efficiency
val theoreticalDiv: Int = N * (N + 1) / 2 // 6
val theoreticalMulSub: Int = (2 * N * N * N + 3 * N * N - 5 * N) / 6 // 11
Complexity.divCounter shouldBe theoreticalDiv
Complexity.mulCounter shouldBe theoreticalMulSub
Complexity.subCounter shouldBe theoreticalMulSub
}