-
Notifications
You must be signed in to change notification settings - Fork 5
/
train_casme.py
279 lines (250 loc) · 11.5 KB
/
train_casme.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import time
import tqdm
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
from casme import core, archs, criterion
from casme.train_utils import single_adjust_learning_rate, save_checkpoint, set_args
from casme.tasks.imagenet.utils import get_data_loaders
import zconf
import zproto.zlogv1 as zlog
@zconf.run_config
class RunConfiguration(zconf.RunConfig):
# Experiment Setup
train_json = zconf.attr(help='train_json path')
val_json = zconf.attr(help='val_json path')
output_path = zconf.attr(help='output_path')
name = zconf.attr(default='random',
help='name used to build a path where the models and log are saved (default: random)')
log_buffer = zconf.attr(default=10, type=int, help='log buffer')
workers = zconf.attr(default=4, type=int,
help='number of data loading workers (default: 4)')
epochs = zconf.attr(default=60, type=int,
help='number of total epochs to run')
batch_size = zconf.attr(default=128, type=int,
help='mini-batch size (default: 128)')
perc_of_training = zconf.attr(default=0.2, type=float,
help='percent of training set seen in each epoch')
do_val = zconf.attr(action="store_true")
lr = zconf.attr(default=0.001, type=float,
help='initial learning rate for classifier')
lr_casme = zconf.attr(default=0.001, type=float,
help='initial learning rate for casme')
lrde = zconf.attr(default=20, type=int,
help='how often is the learning rate decayed')
momentum = zconf.attr(default=0.9, type=float,
help='momentum for classifier')
weight_decay = zconf.attr(default=1e-4, type=float,
help='weight decay for both classifier and casme (default: 1e-4)')
upsample = zconf.attr(default='nearest',
help='mode for final upsample layer in the decoder (default: nearest)')
fixed_classifier = zconf.attr(action='store_true',
help='train classifier')
prob_historic = zconf.attr(default=0.5, type=float,
help='probability for evaluating historic model')
save_freq = zconf.attr(default=1000, type=int,
help='frequency of model saving to history (in batches)')
actual_save_freq = zconf.attr(default=1, type=int)
f_size = zconf.attr(default=30, type=int,
help='size of F set - maximal number of previous classifier iterations stored')
resnet_path = zconf.attr(default=None, type=str, help="If none, defaults to loading from full ResNet-50")
lambda_r = zconf.attr(default=None, type=float)
lambda_tv = zconf.attr(default=None, type=float)
masker_use_layers = zconf.attr(default="0,1,2,3,4", type=str)
mask_in_criterion = zconf.attr(default="none", type=str, help='crossentropy|kldivergence|none')
mask_in_criterion_config = zconf.attr(default="", type=str, help='etc')
mask_in_objective_direction = zconf.attr(default="maximize", help="maximize|minimize")
mask_in_objective_type = zconf.attr(default="entropy", help="entropy|classification")
mask_in_weight = zconf.attr(default=1.0, type=float)
mask_in_lambda_r = zconf.attr(default=10, type=float)
mask_in_lambda_tv = zconf.attr(default=None, type=float)
mask_out_criterion = zconf.attr(default="none", type=str, help='crossentropy|kldivergence|none')
mask_out_criterion_config = zconf.attr(default="", type=str, help='etc')
mask_out_objective_direction = zconf.attr(default="maximize", help="maximize|minimize")
mask_out_objective_type = zconf.attr(default="entropy", help="entropy|classification")
mask_out_weight = zconf.attr(default=1.0, type=float)
mask_out_lambda_r = zconf.attr(default=10, type=float)
mask_out_lambda_tv = zconf.attr(default=None, type=float)
reproduce = zconf.attr(default='',
help='reproducing paper results (F|L|FL|L100|L1000)')
add_prob_layers = zconf.attr(action='store_true')
prob_sample_low = zconf.attr(default=0.25, type=float)
prob_sample_high = zconf.attr(default=0.75, type=float)
prob_loss_func = zconf.attr(default="l1")
add_class_ids = zconf.attr(action='store_true')
apply_gumbel = zconf.attr(action='store_true')
apply_gumbel_tau = zconf.attr(default=0.1, type=float)
gumbel_output_mode = zconf.attr(default="hard", type=str)
# Placeholders
casms_path = zconf.attr(default='')
log_path = zconf.attr(default='')
infiller_model = zconf.attr(default=None, type=str)
do_infill_for_mask_in = zconf.attr(default=0, type=int)
do_infill_for_mask_out = zconf.attr(default=0, type=int)
def _post_init(self):
randomhash = ''.join(str(time.time()).split('.'))
self.name = self.name + "___" + randomhash
self.need_infiller = self.do_infill_for_mask_in or self.do_infill_for_mask_out
if self.lambda_r is not None:
assert self.mask_in_lambda_r == 10
assert self.mask_out_lambda_r == 10
self.mask_in_lambda_r = self.lambda_r
self.mask_out_lambda_r = self.lambda_r
if self.lambda_tv is not None:
assert self.mask_in_lambda_tv is None
assert self.mask_out_lambda_tv is None
self.mask_in_lambda_tv = self.lambda_tv
self.mask_out_lambda_tv = self.lambda_tv
if self.resnet_path == "none":
self.resnet_path = None
set_args(self)
def main(args):
print("Path: {}".format(args.casms_path))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# create models and optimizers
classifier = archs.resnet50shared(pretrained=True, path=args.resnet_path).to(device)
masker = archs.default_masker(
final_upsample_mode=args.upsample,
add_prob_layers=args.add_prob_layers,
add_class_ids=args.add_class_ids,
apply_gumbel=args.apply_gumbel,
apply_gumbel_tau=args.apply_gumbel_tau,
gumbel_output_mode=args.gumbel_output_mode,
use_layers=archs.string_to_tuple(args.masker_use_layers, cast=int),
).to(device)
classifier_optimizer = torch.optim.SGD(
classifier.parameters(), args.lr,
momentum=args.momentum, weight_decay=args.weight_decay,
)
masker_optimizer = torch.optim.Adam(
masker.parameters(), args.lr_casme,
weight_decay=args.weight_decay,
)
cudnn.benchmark = True
train_loader, val_loader = get_data_loaders(
train_json=args.train_json,
val_json=args.val_json,
batch_size=args.batch_size,
workers=args.workers,
)
mask_in_criterion = criterion.resolve_masker_criterion(
masker_criterion_type=args.mask_in_criterion,
masker_criterion_config=args.mask_in_criterion_config,
lambda_r=args.mask_in_lambda_r,
lambda_tv=args.mask_in_lambda_tv,
add_prob_layers=args.add_prob_layers,
prob_loss_func=args.prob_loss_func,
objective_direction=args.mask_in_objective_direction,
objective_type=args.mask_in_objective_type,
mask_reg_mode="mask_in",
device=device,
)
mask_out_criterion = criterion.resolve_masker_criterion(
masker_criterion_type=args.mask_out_criterion,
masker_criterion_config=args.mask_out_criterion_config,
lambda_r=args.mask_out_lambda_r,
lambda_tv=args.mask_out_lambda_tv,
add_prob_layers=args.add_prob_layers,
prob_loss_func=args.prob_loss_func,
objective_direction=args.mask_out_objective_direction,
objective_type=args.mask_out_objective_type,
mask_reg_mode="mask_out",
device=device,
)
if args.need_infiller:
infiller = archs.get_infiller(args.infiller_model).to(device).eval()
casme_runner = core.InfillerCASMERunner(
classifier=classifier,
masker=masker,
classifier_optimizer=classifier_optimizer,
masker_optimizer=masker_optimizer,
classifier_criterion=nn.CrossEntropyLoss(),
mask_in_criterion=mask_in_criterion,
mask_out_criterion=mask_out_criterion,
fixed_classifier=args.fixed_classifier,
perc_of_training=args.perc_of_training,
prob_historic=args.prob_historic,
save_freq=args.save_freq,
zoo_size=args.f_size,
image_normalization_mode=None,
add_prob_layers=args.add_prob_layers,
prob_sample_low=args.prob_sample_low,
prob_sample_high=args.prob_sample_high,
mask_in_weight=args.mask_in_weight,
mask_out_weight=args.mask_out_weight,
add_class_ids=args.add_class_ids,
device=device,
logger=zlog.ZBufferedLogger(
fol_path=args.log_path,
buffer_size_dict={"messages": 1},
default_buffer_size=1,
),
infiller=infiller,
train_infiller=False,
do_infill_for_mask_in=args.do_infill_for_mask_in,
do_infill_for_mask_out=args.do_infill_for_mask_out,
)
else:
casme_runner = core.CASMERunner(
classifier=classifier,
masker=masker,
classifier_optimizer=classifier_optimizer,
masker_optimizer=masker_optimizer,
classifier_criterion=nn.CrossEntropyLoss(),
mask_in_criterion=mask_in_criterion,
mask_out_criterion=mask_out_criterion,
fixed_classifier=args.fixed_classifier,
perc_of_training=args.perc_of_training,
prob_historic=args.prob_historic,
save_freq=args.save_freq,
zoo_size=args.f_size,
image_normalization_mode=None,
add_prob_layers=args.add_prob_layers,
prob_sample_low=args.prob_sample_low,
prob_sample_high=args.prob_sample_high,
mask_in_weight=args.mask_in_weight,
mask_out_weight=args.mask_out_weight,
add_class_ids=args.add_class_ids,
device=device,
logger=zlog.ZBufferedLogger(
fol_path=args.log_path,
buffer_size_dict={"messages": 1},
default_buffer_size=1,
)
)
# training loop
for epoch in tqdm.trange(args.epochs, desc="Epochs"):
single_adjust_learning_rate(
optimizer=classifier_optimizer,
epoch=epoch, lr=args.lr, lrde=args.lrde,
)
single_adjust_learning_rate(
optimizer=masker_optimizer,
epoch=epoch, lr=args.lr_casme, lrde=args.lrde,
)
# train for one epoch
casme_runner.train_or_eval(
data_loader=train_loader,
is_train=True,
epoch=epoch,
)
if args.do_val:
# evaluate on validation set
casme_runner.train_or_eval(
data_loader=val_loader,
is_train=False,
epoch=epoch
)
# save checkpoint
if (epoch + 1) % args.actual_save_freq == 0:
save_checkpoint({
'epoch': epoch + 1,
'state_dict_classifier': classifier.state_dict(),
'state_dict_masker': masker.state_dict(),
'optimizer_classifier': classifier_optimizer.state_dict(),
'optimizer_masker': masker_optimizer.state_dict(),
'args': args.to_dict(),
}, args)
if __name__ == '__main__':
main(args=RunConfiguration.run_cli_json_prepend())