Skip to content

4uiiurz1/pytorch-scale-aware-triplet

Repository files navigation

PyTorch implementation of Scale-Aware Triplet Networks

This repository contains code for Scale-Aware Triplet Networks based on Learning Deep Descriptors with Scale-Aware Triplet Networks implemented in PyTorch.

Requirements

  • Python 3.6
  • PyTorch 1.0

Usage

Args:

  • theta_glo (float, default: 1.15): Global context in all triplets.
  • delta (int, default: 5): Scale correction parameter.
  • gamma (float, default: 0.5): Ratio of siamese and triplet.
  • scale_aware (bool, default: True): Scale-aware sampling.

Input:

  • y_a: Anchor samples.
  • y_b: Positive samples. Each positive samples have same class labels to the correspond anchor samples.
  • targets: Class labels of y_a and y_b.
criterion = MixedContextLoss(theta_glo=1.15, delta=5, gamma=0.5, scale_aware=True)

y_a = model(input1)
y_p = model(input2)

loss = criterion(y_a, y_p, targets)

optimizer.zero_grad()
loss.backward()
optimizer.step()

Training

MNIST

Use scale-aware siamese loss:

python train.py --gamma 0 --scale-aware True

Use scale-aware triplet loss:

python train.py --gamma 1 --scale-aware True

Use scale-aware mixed context loss (gamma=0.5):

python train.py --gamma 0.5 --scale-aware True

Results

MNIST

mnist_siamese mnist_mixed mnist_triplet

About

PyTorch implementation of Scale-Aware Triplet Networks

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages