一款完全免费的内核级内存读写工具,可读写应用层任意进程内存数据,驱动工具目前支持读写整数,字节,字节集,单精度浮点数,双精度浮点数,多级偏移读写,取模块地址,分配远程内存等功能,读写效率高,速度快,兼容性好。
已停止更新,不知道是触及到了谁的利益,也不知道国人的素质到底如何?又或者是哪个安全公司里?哪个游戏厂商里的打工人?为了评估软件的可用性,而整出的这些,至此,我还是决定永久停止该工具的更新,并停止其他版本的开放。
目前驱动读写支持的读写函数如下表所示;
导出函数 | 函数作用 |
---|---|
BOOL SetPid(DWORD Pid) | 设置全局进程PID |
BOOL Read(ULONG64 address, T* ret) | 自定义读内存 |
BOOL Write(ULONG64 address, T data) | 自定义读内存 |
BOOL ReadMemoryDWORD(ULONG64 addre, DWORD * ret) | 读内存DWORD |
BOOL ReadMemoryDWORD64(ULONG64 addre, DWORD64 * ret) | 读内存DWORD64 |
BOOL ReadMemoryBytes(ULONG64 addre, BYTE **ret, DWORD sizes) | 读内存字节 |
BOOL ReadMemoryFloat(ULONG64 addre, float* ret) | 读内存浮点数 |
BOOL ReadMemoryDouble(ULONG64 addre, double* ret) | 读内存双精度浮点数 |
BOOL WriteMemoryBytes(ULONG64 addre, BYTE * data, DWORD sizes) | 写内存字节 |
BOOL WriteMemoryDWORD(ULONG64 addre, DWORD ret) | 写内存DWORD |
BOOL WriteMemoryDWORD64(ULONG64 addre, DWORD64 ret) | 写内存DWORD64 |
BOOL WriteMemoryFloat(ULONG64 addre, float ret) | 写内存浮点数 |
BOOL WriteMemoryDouble(ULONG64 addre, double ret) | 写内存双精度浮点数 |
DWORD ReadDeviationMemory32(ProcessDeviationMemory *read_offset_struct) | 计算32位偏移数据基址 |
DWORD64 ReadDeviationMemory64(ProcessDeviationMemory *read_offset_struct) | 计算64位偏移数据基址 |
DWORD64 GetModuleAddress(std::string dllname) | 驱动读取进程模块基地址 |
DWORD64 GetSystemRoutineAddress(std::string funcname) | 获取系统函数内存地址 |
DWORD64 CreateRemoteMemory(DWORD length) | 在对端分配内存空间 |
DWORD DeleteRemoteMemory(DWORD64 address, DWORD length) | 销毁对端内存 |
新版本读写API接口在读写内存之前需要提前设置进程PID号,后期的调用将不需要再传入进程PID,此类读写适合长期读,某些FPS射击类游戏的人物数组,3D类游戏坐标由于坐标会频繁移动,需持续不间断读取,此读写模块将很适,接下来将带大家分析并简单使用这些API接口实现功能。
在使用LyMemoryLib
静态库之前请确保您已经正确的配置了Visual Studio
引用头文件。
如何安装与卸载驱动: 读写的第一步是安装驱动并将其运行,当然你可以通过第三方组件对驱动进行安装,也可以使用LyMemoryLib
中的函数实现安装,如下则是通过LyMemoryLib.hpp
将驱动加载的完整实现;
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com
#include "LyMemoryLib.h"
#include <Windows.h>
#include <iostream>
#pragma comment(lib,"advapi32.lib")
#pragma comment(lib,"LyMemoryLib.lib")
// 安装驱动
BOOL InstallDriver(LyMemoryDrvCtrl Memory)
{
char szSysFile[MAX_PATH] = { 0 };
char szSvcLnkName[] = "LyMemory";;
BOOL ref = FALSE;
DWORD index = 0;
// 获取完整路径
Memory.GetAppPath(szSysFile);
strcat_s(szSysFile, "LyMemory.sys");
printf("驱动路径: %s \n", szSysFile);
index = index + 1;
// 安装驱动
ref = Memory.Install(szSysFile, szSvcLnkName, szSvcLnkName);
printf("安装状态: %d \n", ref);
index = index + 1;
// 启动驱动
ref = Memory.Start();
printf("启动状态: %d \n", ref);
index = index + 1;
// 打开
ref = Memory.Open("\\\\.\\LyMemory");
printf("打开状态: %d \n", ref);
index = index + 1;
if (index == 4 && ref == TRUE)
{
return TRUE;
}
return FALSE;
}
// 卸载驱动
BOOL RemoveDriver(LyMemoryDrvCtrl Memory)
{
BOOL ref = 0;
// 关闭
ref = Memory.Stop();
printf("关闭状态: %d \n", ref);
// 移除
ref = Memory.Remove();
printf("移除状态: %d \n", ref);
return ref;
}
int main(int argc, char* argv[])
{
LyMemoryDrvCtrl DriveControl;
// 加载驱动
BOOL ref = InstallDriver(DriveControl);
if (ref == TRUE)
{
printf("[*] 驱动已加载 \n");
}
// 卸载驱动
RemoveDriver(DriveControl);
system("pause");
return 0;
}
如上代码编译后并以管理员权限运行,则会将驱动LyMemory.sys
自动加载,并在调试板输出如下图所示的信息;
设置PID进程绑定: 如果需要使用读写函数,第一步则是设置进程PID
绑定,通常可通过SetPid(DWORD Pid)
函数传入进程PID
进行绑定操作,一旦进程被绑定则后续无需再次打开,提高了读写效率,也可预防多次附加脱离导致应用层异常,如果需要使用设置PID则你可以这样来写;
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com
#include "LyMemoryLib.h"
#include <Windows.h>
#include <iostream>
#pragma comment(lib,"advapi32.lib")
#pragma comment(lib,"LyMemoryLib.lib")
int main(int argc, char *argv[])
{
LyMemoryDrvCtrl DriveControl;
DriveControl.InstallAndRun();
BOOL set_pid = DriveControl.SetPid(6536);
if (set_pid == TRUE)
{
printf("[*] 设置PID = %d \n", set_pid);
}
system("pause");
return 0;
}
运行如上代码所示将自动绑定到进程6536
并输出绑定状态,如下图所示;
内核读取模块基址: 由于目前进程已被附加到到驱动上,此时可以调用GetModuleAddress()
获取进程内特定模块的基址,此函数接收一个模块名;
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com
#include "LyMemoryLib.h"
#include <Windows.h>
#include <iostream>
#pragma comment(lib,"advapi32.lib")
#pragma comment(lib,"LyMemoryLib.lib")
int main(int argc, char *argv[])
{
LyMemoryDrvCtrl DriveControl;
DriveControl.InstallAndRun();
BOOL set_pid = DriveControl.SetPid(6536);
if (set_pid == TRUE)
{
printf("[*] 设置PID = %d \n", set_pid);
}
// 取模块基址
DWORD64 user32 = DriveControl.GetModuleAddress("user32.dll");
printf("user32 = 0x%p \n", user32);
DWORD64 kernel32 = DriveControl.GetModuleAddress("kernel32.dll");
printf("kernel32 = 0x%p \n", kernel32);
system("pause");
return 0;
}
如上代码编译并运行,则取出被附加进程内user32.dll
以及kernel32.dll
的模块基址,输出效果图如下所示;
取内核函数基址: 与取应用层模块基址类似,函数GetSystemRoutineAddress
可用于获取到内核模块中特定导出函数的内存基址。
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com
#include "LyMemoryLib.h"
#include <Windows.h>
#include <iostream>
#pragma comment(lib,"advapi32.lib")
#pragma comment(lib,"LyMemoryLib.lib")
int main(int argc, char *argv[])
{
LyMemoryDrvCtrl DriveControl;
DriveControl.InstallAndRun();
BOOL set_pid = DriveControl.SetPid(6536);
if (set_pid == TRUE)
{
printf("[*] 设置PID = %d \n", set_pid);
}
// 取函数地址
CHAR *SzFunction[3] = { "NtReadFile", "NtClose", "NtSetEvent" };
for (size_t i = 0; i < 3; i++)
{
DWORD64 ptr = DriveControl.GetSystemRoutineAddress(SzFunction[i]);
printf("函数 = %s | 地址 = 0x%p \n", SzFunction[i], ptr);
}
system("pause");
return 0;
}
运行如上方所示的代码片段,则自动取出"NtReadFile", "NtClose", "NtSetEvent"
三个函数的内存地址,输出效果图如下所示;
分配与释放堆空间: 在对端内存中开辟一段内存可调用CreateRemoteMemory
函数实现,释放堆空间则可调用DeleteRemoteMemory
函数,默认情况下分配的空间自带读写执行属性,为Hook挂钩
转向提供可能。
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com
#include "LyMemoryLib.h"
#include <Windows.h>
#include <iostream>
#pragma comment(lib,"advapi32.lib")
#pragma comment(lib,"LyMemoryLib.lib")
int main(int argc, char *argv[])
{
LyMemoryDrvCtrl DriveControl;
DriveControl.InstallAndRun();
BOOL set_pid = DriveControl.SetPid(6536);
if (set_pid == TRUE)
{
printf("[*] 设置PID = %d \n", set_pid);
}
// 分配内存空间
DWORD64 address = DriveControl.CreateRemoteMemory(1024);
printf("[+] 已分配内存 = 0x%p \n", address);
// 释放内存
BOOL del = DriveControl.DeleteRemoteMemory(address, 1024);
if (del == TRUE)
{
printf("[-] 内存空间 0x%p 已被释放 \n", address);
}
system("pause");
return 0;
}
如上代码片段运行后,将在对端内存中分配address
的地址,分配后自动将其释放,输出效果图如下所示;
读/写内存整数型: 整数类型的读取可调用ReadMemoryDWORD
读取32位整数,调用ReadMemoryDWORD64
则读取64位整数型;
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com
#include "LyMemoryLib.h"
#include <Windows.h>
#include <iostream>
#pragma comment(lib,"advapi32.lib")
#pragma comment(lib,"LyMemoryLib.lib")
int main(int argc, char *argv[])
{
LyMemoryDrvCtrl DriveControl;
DriveControl.InstallAndRun();
BOOL set_pid = DriveControl.SetPid(6536);
if (set_pid == TRUE)
{
printf("[*] 设置PID = %d \n", set_pid);
}
// 读取32位整数
DWORD read_value = 0;
BOOL read_flag = DriveControl.ReadMemoryDWORD(0x0188F828, &read_value);
if (read_flag == TRUE)
{
printf("[*] 读取32位数据 = %d \n", read_value);
}
// 读取64位整数
DWORD64 read64_value = 0;
BOOL read64_flag = DriveControl.ReadMemoryDWORD64(0x0188F828, &read64_value);
if (read64_flag == TRUE)
{
printf("[*] 读取64位数据 = %d \n", read64_value);
}
system("pause");
return 0;
}
编译并运行如上代码片段,则会读取0x0188F828
处的整数类型数据,读取输出效果图如下所示;
写入整数类型同理,调用WriteMemoryDWORD
写出32位整数,调用WriteMemoryDWORD64
写出64位整数;
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com
#include "LyMemoryLib.h"
#include <Windows.h>
#include <iostream>
#pragma comment(lib,"advapi32.lib")
#pragma comment(lib,"LyMemoryLib.lib")
int main(int argc, char *argv[])
{
LyMemoryDrvCtrl DriveControl;
DriveControl.InstallAndRun();
BOOL set_pid = DriveControl.SetPid(6536);
if (set_pid == TRUE)
{
printf("[*] 设置PID = %d \n", set_pid);
}
// 写入32位整数
BOOL write32 = DriveControl.WriteMemoryDWORD(0x0188F828, 1000);
if (write32 == TRUE)
{
printf("[+] 写出数据完成 \n");
}
// 写入64位整数
BOOL write64 = DriveControl.WriteMemoryDWORD64(0x0188F828, 2000);
if (write64 == TRUE)
{
printf("[+] 写出数据完成 \n");
}
system("pause");
return 0;
}
编译并运行代码,将向目标进程分别写出1000
及2000
,代码输出效果如下图所示;
读/写内存字节集: 内存读写字节集可调用ReadMemoryBytes
函数,写出字节集调用WriteMemoryBytes
函数;
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com
#include "LyMemoryLib.h"
#include <Windows.h>
#include <iostream>
#pragma comment(lib,"advapi32.lib")
#pragma comment(lib,"LyMemoryLib.lib")
int main(int argc, char *argv[])
{
LyMemoryDrvCtrl DriveControl;
DriveControl.InstallAndRun();
BOOL set_pid = DriveControl.SetPid(6536);
if (set_pid == TRUE)
{
printf("[*] 设置PID = %d \n", set_pid);
}
// 读取字节集
BYTE buffer[8] = { 0 };
BYTE* bufferPtr = buffer;
BOOL flag = DriveControl.ReadMemoryBytes(0x401000, &bufferPtr, sizeof(buffer));
if (flag == TRUE)
{
for (int x = 0; x < 8; x++)
{
printf("[+] 读取字节: 0x%x \n", buffer[x]);
}
}
system("pause");
return 0;
}
运行如上代码片段,即可在内存0x401000
处开始读取字节集,向后读取8字节,并存入buffer
中,输出效果图如下所示;
写出字节集与读取基本一致,函数WriteMemoryBytes
则用于写出字节集数据,写出是需传递一个定义好的字节数组;
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com
#include "LyMemoryLib.h"
#include <Windows.h>
#include <iostream>
#pragma comment(lib,"advapi32.lib")
#pragma comment(lib,"LyMemoryLib.lib")
int main(int argc, char *argv[])
{
LyMemoryDrvCtrl DriveControl;
DriveControl.InstallAndRun();
BOOL set_pid = DriveControl.SetPid(6536);
if (set_pid == TRUE)
{
printf("[*] 设置PID = %d \n", set_pid);
}
// 写内存字节集
BYTE writebuff[4] = { 0x90, 0x90, 0x90, 0x90 };
BOOL flag = DriveControl.WriteMemoryBytes(0x401000, writebuff, sizeof(writebuff));
if (flag == TRUE)
{
printf("[+] 写出字节集完成 \n");
}
system("pause");
return 0;
}
运行如上代码片段,则将字节集写出到0x401000
内存处,写出效果如下图所示;
读/写内存浮点数: 浮点数可分为单浮点与双浮点,单浮点可使用ReadMemoryFloat
实现读写,双浮点则调用ReadMemoryDouble
实现,两者实现原理完全一致,仅仅只是读写时多出了4个字节的宽度而已。
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com
#include "LyMemoryLib.h"
#include <Windows.h>
#include <iostream>
#pragma comment(lib,"advapi32.lib")
#pragma comment(lib,"LyMemoryLib.lib")
int main(int argc, char *argv[])
{
LyMemoryDrvCtrl DriveControl;
DriveControl.InstallAndRun();
BOOL set_pid = DriveControl.SetPid(6536);
if (set_pid == TRUE)
{
printf("[*] 设置PID = %d \n", set_pid);
}
// 读取单浮点
float read_float = 0;
BOOL float_flag = DriveControl.ReadMemoryFloat(0x01894EF8, &read_float);
if (float_flag == TRUE)
{
printf("[+] 读取单精度 = %f \n", read_float);
}
// 读取双浮点
double read_double = 0;
BOOL double_flag = DriveControl.ReadMemoryDouble(0x01894EF8, &read_double);
if (double_flag == TRUE)
{
printf("[+] 读取双精度 = %f \n", double_flag);
}
system("pause");
return 0;
}
运行后输出两个浮点数,注意双精度此处并不是错误而是输出问题,效果图如下所示;
那么如何写出数据呢,只需要调用WriteMemoryFloat
即可实现写出浮点数的目的;
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com
#include "LyMemoryLib.h"
#include <Windows.h>
#include <iostream>
#pragma comment(lib,"advapi32.lib")
#pragma comment(lib,"LyMemoryLib.lib")
int main(int argc, char *argv[])
{
LyMemoryDrvCtrl DriveControl;
DriveControl.InstallAndRun();
BOOL set_pid = DriveControl.SetPid(6536);
if (set_pid == TRUE)
{
printf("[*] 设置PID = %d \n", set_pid);
}
// 写取单浮点
BOOL ref = DriveControl.WriteMemoryFloat(0x01894EF8, 100.245);
if (ref == TRUE)
{
printf("[+] 写出数据完成 \n");
}
system("pause");
return 0;
}
以单精度浮点数为例,写出数据后输出如下效果;
计算多级偏移动态地址: 函数ReadDeviationMemory32
可实现动态计算多级偏移的功能,该函数最多可接受32级偏移的计算,计算后可得到一个动态地址,用户得到动态地址后可对其地址执行读写整数,字节,字节集,浮点数等各类操作,我们以整数读写为例子;
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com
#include "LyMemoryLib.h"
#include <Windows.h>
#include <iostream>
#pragma comment(lib,"advapi32.lib")
#pragma comment(lib,"LyMemoryLib.lib")
int main(int argc, char *argv[])
{
LyMemoryDrvCtrl DriveControl;
DriveControl.InstallAndRun();
BOOL set_pid = DriveControl.SetPid(6536);
if (set_pid == TRUE)
{
printf("[*] 设置PID = %d \n", set_pid);
}
// 计算四级偏移动态地址
ProcessDeviationMemory read_offset_struct = { 0 };
read_offset_struct.Address = 0x6566e0; // 基地址
read_offset_struct.OffsetSize = 4; // 偏移长度
read_offset_struct.Data = 0; // 读入的数据
read_offset_struct.Offset[0] = 0x18; // 一级偏移
read_offset_struct.Offset[1] = 0x0; // 二级偏移
read_offset_struct.Offset[2] = 0x14; // 三级偏移
read_offset_struct.Offset[3] = 0x0c; // 四级偏移
// 开始计算
DWORD BaseAddress = DriveControl.ReadDeviationMemory32(&read_offset_struct);
printf("[+] 得到动态地址 = 0x%016lx \n", BaseAddress);
// 读取整数
DWORD GetDWORD = 0;
BOOL flag = DriveControl.ReadMemoryDWORD(BaseAddress, &GetDWORD);
if (flag == TRUE)
{
printf("[+] 读取数据 = %d \n", GetDWORD);
}
system("pause");
return 0;
}
如上代码通过调用ReadDeviationMemory32
计算出当前动态地址的基址,并通过ReadMemoryDWORD
读取此处的内存DWORD类型,输出效果如下所示;
内存读写反汇编: 读写函数我们可使用ReadMemoryBytes
实现字节集的读取,通过运用capstone
反汇编引擎即可对特定内存空间进行反汇编操作;
// 署名权
// right to sign one's name on a piece of work
// PowerBy: LyShark
// Email: me@lyshark.com
#include "LyMemoryLib.h"
#include <Windows.h>
#include <iostream>
#include <inttypes.h>
#include <capstone\capstone.h>
#pragma comment(lib,"capstone64.lib")
#pragma comment(lib,"advapi32.lib")
#pragma comment(lib,"LyMemoryLib.lib")
int main(int argc, char *argv[])
{
LyMemoryDrvCtrl DriveControl;
DriveControl.InstallAndRun();
BOOL set_pid = DriveControl.SetPid(5588);
if (set_pid == TRUE)
{
printf("[*] 设置PID = %d \n", set_pid);
}
// 读取前1024个字节
BYTE MyArray[1024] = { 0 };
BYTE* bufferPtr = MyArray;
BOOL flag = DriveControl.ReadMemoryBytes(0x401000, &bufferPtr, sizeof(MyArray));
if (flag == TRUE)
{
printf("[*] 读取完毕 \n");
}
csh handle;
cs_insn *insn;
size_t count;
int size = 1023;
// 打开句柄
if (cs_open(CS_ARCH_X86, CS_MODE_32, &handle) != CS_ERR_OK)
{
return 0;
}
// 反汇编代码,地址从0x1000开始,返回总条数
count = cs_disasm(handle, (unsigned char *)MyArray, size, 0x401000, 0, &insn);
if (count > 0)
{
size_t index;
for (index = 0; index < count; index++)
{
/*
for (int x = 0; x < insn[index].size; x++)
{
printf("机器码: %d -> %02X \n", x, insn[index].bytes[x]);
}
*/
printf("地址: 0x%"PRIx64" | 长度: %d 反汇编: %s %s \n", \
insn[index].address, insn[index].size, \
insn[index].mnemonic, insn[index].op_str\
);
}
cs_free(insn, count);
}
/*
else
{
printf("反汇编返回长度为空 \n");
}
*/
cs_close(&handle);
system("pause");
return 0;
}
运行后即可对进程中0x401000
的内存区域向下反汇编1024
个字节,输出效果图如下所示;