Skip to content

๐Ÿš€ Crypto Price Predictor: Machine learning models to forecast future cryptocurrency prices! ๐Ÿ“‰๐Ÿ’น

Notifications You must be signed in to change notification settings

Armanx200/Crypto_Price_Predictor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

9 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿš€ Crypto Price Predictor ๐Ÿ“ˆ

Welcome to the Crypto Price Predictor repository! This project aims to forecast cryptocurrency prices using machine learning models. ๐ŸŒŸ

Bitcoin Prediction

๐Ÿ“‚ Project Structure

  • Dataset/ ๐Ÿ“Š: Contains the historical cryptocurrency data in CSV format.
  • Models/ ๐Ÿง : Stores the trained machine learning models.
  • Crypto_Price_Model.py ๐Ÿค–: Script to train the models.
  • Crypto_Price_Predictor.py ๐Ÿ”ฎ: Script to predict future prices using the trained models.

๐Ÿ› ๏ธ How to Use

1. Train the Model

First, run Crypto_Price_Model.py to train the models for all the cryptocurrencies. The trained models will be saved in the Models directory.

python Crypto_Price_Model.py

2. Predict Future Prices

Next, use Crypto_Price_Predictor.py to load a trained model and predict future prices for a specified cryptocurrency.

python Crypto_Price_Predictor.py

Enter the name of the cryptocurrency (e.g., Bitcoin, Ethereum) when prompted.

๐Ÿ† Model Performance

Here are the Mean Squared Error (MSE) values for our models:

  • Aave: 2053.1783
  • BinanceCoin: 64902.0719
  • Bitcoin: 298114964.3461
  • Cardano: 0.1006
  • ChainLink: 121.0245
  • Cosmos: 110.5456
  • CryptocomCoin: 0.0006
  • Dogecoin: 0.0188
  • EOS: 0.3773
  • Ethereum: 487633.3648
  • Iota: 0.0150
  • Litecoin: 189.7667
  • Monero: 237.8501
  • NEM: 0.0008
  • Polkadot: 13.2997
  • Solana: 152.0202
  • Stellar: 0.0020
  • Tether: 7.7837e-06
  • Tron: 7.6098e-05
  • Uniswap: 18.8259
  • USDCoin: 8.8966e-06
  • WrappedBitcoin: 40597001.4039
  • XRP: 0.0072

๐ŸŒŸ Features

  • Predicts future prices of various cryptocurrencies.
  • Utilizes Random Forest Regressor for accurate predictions.
  • Handles missing data and performs necessary preprocessing.

๐Ÿ“ฆ Dependencies

Ensure you have the required libraries installed. You can install them using pip:

pip install pandas numpy scikit-learn joblib matplotlib

๐Ÿ“ซ Connect with Me

For any queries or discussions, feel free to reach out via my GitHub profile.


Happy predicting! ๐Ÿš€๐Ÿ“ˆ



### Instructions for Running the Scripts

1. **Train the Model:**
   - Run `Crypto_Price_Model.py` to train the models for all the cryptocurrencies and save them to the "Models" directory.

   ```bash
   python Crypto_Price_Model.py
  1. Predict Future Prices:

    • Run Crypto_Price_Predictor.py to load a trained model from the "Models" directory and predict future prices for a specified cryptocurrency.
    python Crypto_Price_Predictor.py
    • Enter the name of the cryptocurrency (e.g., Bitcoin, Ethereum) when prompted.

Dependencies

Make sure you have the required libraries installed. You can install them using pip:

pip install pandas numpy scikit-learn joblib matplotlib

These updated scripts will now save the trained models in the "Models" directory and load them from there for prediction.

Releases

No releases published

Packages

No packages published

Languages