Welcome to the Crypto Price Predictor repository! This project aims to forecast cryptocurrency prices using machine learning models. ๐
Dataset/
๐: Contains the historical cryptocurrency data in CSV format.Models/
๐ง : Stores the trained machine learning models.Crypto_Price_Model.py
๐ค: Script to train the models.Crypto_Price_Predictor.py
๐ฎ: Script to predict future prices using the trained models.
First, run Crypto_Price_Model.py
to train the models for all the cryptocurrencies. The trained models will be saved in the Models
directory.
python Crypto_Price_Model.py
Next, use Crypto_Price_Predictor.py
to load a trained model and predict future prices for a specified cryptocurrency.
python Crypto_Price_Predictor.py
Enter the name of the cryptocurrency (e.g., Bitcoin, Ethereum) when prompted.
Here are the Mean Squared Error (MSE) values for our models:
- Aave: 2053.1783
- BinanceCoin: 64902.0719
- Bitcoin: 298114964.3461
- Cardano: 0.1006
- ChainLink: 121.0245
- Cosmos: 110.5456
- CryptocomCoin: 0.0006
- Dogecoin: 0.0188
- EOS: 0.3773
- Ethereum: 487633.3648
- Iota: 0.0150
- Litecoin: 189.7667
- Monero: 237.8501
- NEM: 0.0008
- Polkadot: 13.2997
- Solana: 152.0202
- Stellar: 0.0020
- Tether: 7.7837e-06
- Tron: 7.6098e-05
- Uniswap: 18.8259
- USDCoin: 8.8966e-06
- WrappedBitcoin: 40597001.4039
- XRP: 0.0072
- Predicts future prices of various cryptocurrencies.
- Utilizes Random Forest Regressor for accurate predictions.
- Handles missing data and performs necessary preprocessing.
Ensure you have the required libraries installed. You can install them using pip:
pip install pandas numpy scikit-learn joblib matplotlib
For any queries or discussions, feel free to reach out via my GitHub profile.
Happy predicting! ๐๐
### Instructions for Running the Scripts
1. **Train the Model:**
- Run `Crypto_Price_Model.py` to train the models for all the cryptocurrencies and save them to the "Models" directory.
```bash
python Crypto_Price_Model.py
-
Predict Future Prices:
- Run
Crypto_Price_Predictor.py
to load a trained model from the "Models" directory and predict future prices for a specified cryptocurrency.
python Crypto_Price_Predictor.py
- Enter the name of the cryptocurrency (e.g., Bitcoin, Ethereum) when prompted.
- Run
Make sure you have the required libraries installed. You can install them using pip:
pip install pandas numpy scikit-learn joblib matplotlib
These updated scripts will now save the trained models in the "Models" directory and load them from there for prediction.