The repository contains the R script for optimizing the parameters of SVM
Dataset - https://archive.ics.uci.edu/ml/datasets/wine
Input variables (based on physicochemical tests):
1 - fixed acidity
2 - volatile acidity
3 - citric acid
4 - residual sugar
5 - chlorides
6 - free sulfur dioxide
7 - total sulfur dioxide
8 - density
9 - pH
10 - sulphates
11 - alcohol
Output variable (based on sensory data):
12 - quality (score between 0 and 10)
-
Download the dataset
-
Pre-process the dataset
-
Create ten samples
-
Split the samples in 70 : 30 for training and testing
-
Optimise SVM using randomisation for every sample and report best accuracy and best parameters
-
For the best sample plot the convergence graph
sample | best_accuracy | best_kernel | best_nu | best_epsilon |
---|---|---|---|---|
S1 | 0.649916247906198 | laplacedot | 0.600165726849809 | 0.958756402833387 |
S2 | 0.651591289782245 | laplacedot | 0.162177571561188 | 0.727429841179401 |
S3 | 0.62751677852349 | laplacedot | 0.939081447897479 | 0.813470450695604 |
S4 | 0.628140703517588 | laplacedot | 0.712692788802087 | 0.705607258714736 |
S5 | 0 | 0 | 0 | |
S6 | 0.638190954773869 | laplacedot | 0.305205665994436 | 0.376962826121598 |
S7 | 0.644891122278057 | laplacedot | 0.619259966304526 | 0.90585225680843 |
S8 | 0 | 0 | 0 | |
S9 | 0.629815745393635 | laplacedot | 0.0905253798700869 | 0.21171743911691 |
S10 | 0.649328859060403 | laplacedot | 0.332543317927048 | 0.137839282630011 |