Skip to content

Bibhuprasadbehera/PPI-predictor-

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

61 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Protein Interaction Prediction

This project aims to predict intra-protein interactions using amino acid sequences. The model uses an LSTM neural network implemented in PyTorch.

Setup

  1. Clone the repository:

    git clone https://github.com/Bibhuprasadbehera/PPI-predictor-.git
    cd protein_interaction_prediction
  2. Install dependencies:

    pip install -r requirements.txt
  3. Check if CUDA is available:

    import torch
    print(torch.cuda.is_available())
  4. Prepare your data in the data/ directory.

  5. Adjust the configuration file config.yaml as needed.

Protein-Protein Interaction (PPI) Prediction Workflow

  1. Prepare Data

    • Ensure all required CSV files are in the data/ directory
    • Verify config.yaml has correct paths and parameters
  2. Train Model

    python src/train.py
    • Monitor training progress
    • Note the epoch with best validation performance
  3. Evaluate Model

    python src/evaluate.py
    • Record MSE and R2 scores
    • Compare with baseline or previous versions
  4. Make Predictions

    python src/predict.py --model checkpoints/model_epoch_20.pth --sequence NKVQMHRSEMRPKFFSEHIISILNPHCVV --config config.yaml

    or use

    python src/predict.py --model checkpoints/model_epoch_20.pth --sequence NKVQMHRSEMRPKFFSEHIISILNPHCVV --secondary_structure HHHHHCCCCCCEEEEEECCCCCC --config config.yaml
    • Use for individual sequences or batch processing
  5. Analyze Results

    • Compare predictions with known interactions
    • Assess model generalization on new data
  6. Iterate and Improve (if needed)

    • Adjust hyperparameters in config.yaml
    • Modify model architecture in src/model.py
    • Collect additional training data
  7. Deploy Model

    • Integrate into larger bioinformatics pipeline
    • Create user interface for easy access

Testing

Run unit tests:

python -m unittest discover tests

For more detailed information on each step, refer to the documentation in the docs/ directory.

if facing environment related issue please use this

/mnt/myssd/anaconda3/envs/ml/bin/python "/home/bibhuprasad/Documents/PPI prediction model/PPI-predictor-/src/train.py"

/mnt/myssd/anaconda3/envs/ml/bin/python "/home/bibhuprasad/Documents/PPI prediction model/PPI-predictor-/src/evaluate.py"

/mnt/myssd/anaconda3/envs/ml/bin/python /home/bibhuprasad/Documents/PPI\ prediction\ model/PPI-predictor-/src/predict.py --model checkpoints/model_epoch_20.pth --sequence NKVQMHRSEMRPKFFSEHIISILNPHCVV --config config.yaml

first run the rsa_ss_merger

then do the modify 1 by adding a test interaction score

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published