This project aims to predict intra-protein interactions using amino acid sequences. The model uses an LSTM neural network implemented in PyTorch.
-
Clone the repository:
git clone https://github.com/Bibhuprasadbehera/PPI-predictor-.git cd protein_interaction_prediction
-
Install dependencies:
pip install -r requirements.txt
-
Check if CUDA is available:
import torch print(torch.cuda.is_available())
-
Prepare your data in the
data/
directory. -
Adjust the configuration file
config.yaml
as needed.
-
Prepare Data
- Ensure all required CSV files are in the
data/
directory - Verify
config.yaml
has correct paths and parameters
- Ensure all required CSV files are in the
-
Train Model
python src/train.py
- Monitor training progress
- Note the epoch with best validation performance
-
Evaluate Model
python src/evaluate.py
- Record MSE and R2 scores
- Compare with baseline or previous versions
-
Make Predictions
python src/predict.py --model checkpoints/model_epoch_20.pth --sequence NKVQMHRSEMRPKFFSEHIISILNPHCVV --config config.yaml
or use
python src/predict.py --model checkpoints/model_epoch_20.pth --sequence NKVQMHRSEMRPKFFSEHIISILNPHCVV --secondary_structure HHHHHCCCCCCEEEEEECCCCCC --config config.yaml
- Use for individual sequences or batch processing
-
Analyze Results
- Compare predictions with known interactions
- Assess model generalization on new data
-
Iterate and Improve (if needed)
- Adjust hyperparameters in
config.yaml
- Modify model architecture in
src/model.py
- Collect additional training data
- Adjust hyperparameters in
-
Deploy Model
- Integrate into larger bioinformatics pipeline
- Create user interface for easy access
Run unit tests:
python -m unittest discover tests
For more detailed information on each step, refer to the documentation in the docs/
directory.
/mnt/myssd/anaconda3/envs/ml/bin/python "/home/bibhuprasad/Documents/PPI prediction model/PPI-predictor-/src/train.py"
/mnt/myssd/anaconda3/envs/ml/bin/python "/home/bibhuprasad/Documents/PPI prediction model/PPI-predictor-/src/evaluate.py"
/mnt/myssd/anaconda3/envs/ml/bin/python /home/bibhuprasad/Documents/PPI\ prediction\ model/PPI-predictor-/src/predict.py --model checkpoints/model_epoch_20.pth --sequence NKVQMHRSEMRPKFFSEHIISILNPHCVV --config config.yaml
first run the rsa_ss_merger
then do the modify 1 by adding a test interaction score