Skip to content

Commit

Permalink
upload post
Browse files Browse the repository at this point in the history
  • Loading branch information
BlueHorn07 committed Sep 30, 2024
1 parent 51c2fbb commit e4bdd3b
Showing 1 changed file with 107 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
---
title: "2nd order Homogeneous Linear ODE"
toc: true
author: bluehorn_math
toc_sticky: true
categories: ["Differential Equations"]
excerpt: ""
---

๋ณต์ˆ˜์ „๊ณตํ•˜๊ณ  ์žˆ๋Š” ์ˆ˜ํ•™๊ณผ์˜ ์กธ์—…์‹œํ—˜์„ ์œ„ํ•ด ํ•™๋ถ€ ์ˆ˜ํ•™ ๊ณผ๋ชฉ๋“ค์„ ๋‹ค์‹œ ๊ณต๋ถ€ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค๋งŒ... ๋ฏธ๋ถ„๋ฐฉ์ •์‹์€ ์กธ์—…์‹œํ—˜ ๋Œ€์ƒ ๊ณผ๋ชฉ์ด ์•„๋‹ˆ๋ผ๋Š” ๊ฑธ ๋‚˜์ค‘์— ์•Œ๊ฒŒ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค... OTL... ๊ทธ๋ž˜๋„ ์ด์™• ์‹œ์ž‘ํ•œ ๊ฑฐ ๋‹ค์‹œ ๋ณต์Šต ์ข€ ํ•ด๋ด…์‹œ๋‹ค! ๐Ÿƒ [๋ฏธ๋ถ„๋ฐฉ์ •์‹ ํฌ์ŠคํŠธ ์ „์ฒด ๋ณด๊ธฐ](/categories/differential-equations)
{: .notice--info}

# ๋“ค์–ด๊ฐ€๋ฉฐ

์•„๋ž˜์™€ ๊ฐ™์ด ์ƒ๊ธด 2nd order homogenous linear ODE์˜ ํ•ด๋ฅผ ๊ตฌํ•˜๋Š” ์ผ๋ฐ˜์ ์ธ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๋‹ค๋ฃฌ๋‹ค.

Check warning on line 15 in _posts/mathematics/differntial-equations/2024-09-30-2nd-order-homogeneous-lienar-ode.md

View workflow job for this annotation

GitHub Actions / check_typo

"homogenous" should be "homogeneous".

<div class="definition" markdown="1">

$$
y'' + p(x) y' + q(x) y = 0
$$

</div>

## with constant coefficients

$$
y'' + a y' + b y = 0
$$

2nd order homogenous linear ODE์ธ๋ฐ, ๋งŒ์•ฝ ๊ณ„์ˆ˜ $p(x) = a$, $q(x) = b$๋กœ ์ƒ์ˆ˜์ธ ๊ฒฝ์šฐ๋Š” ํ•ด์˜ ํ˜•ํƒœ๋ฅผ ์‰ฝ๊ฒŒ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ์กด์žฌํ•œ๋‹ค.

Check warning on line 31 in _posts/mathematics/differntial-equations/2024-09-30-2nd-order-homogeneous-lienar-ode.md

View workflow job for this annotation

GitHub Actions / check_typo

"homogenous" should be "homogeneous".

$y = e^{\lambda x}$๋ฅผ ๋Œ€์ž…ํ•ด์„œ ๋‚˜์˜ค๋Š” $\lambda$์— ๋Œ€ํ•œ 2์ฐจ์‹์„ ํ’€์–ด์„œ

$$
\lambda^2 + a \lambda + b = 0
$$

๊ทธ๊ฒƒ์ด (1) ๋‘ ์‹ค๊ทผ์ธ์ง€, (2) ์ค‘๊ทผ์ธ์ง€, (3) ๋‘ ํ—ˆ๊ทผ์ธ์ง€์— ๋”ฐ๋ผ ODE์˜ ํ•ด๋ฅผ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค.

### ๋‘ ์‹ค๊ทผ

์•„์ฃผ ์‰ฌ์šด ์ผ€์ด์Šค๋กœ ๊ทธ๋ƒฅ

- $y_1(x) = e^{\lambda_1 x}$
- $y_2(x) = e^{\lambda_2 x}$

๋กœ ๊ฒฐ์ •๋œ๋‹ค.

### ์ค‘๊ทผ

์ด ๊ฒฝ์šฐ๊ฐ€ ์กฐ๊ธˆ ๋ณต์žกํ•œ๋ฐ, ์ผ๋‹จ ์ค‘๊ทผ $\lambda = - a / 2$๋ฅผ ํ•ด๋กœ ๊ฐ–๋Š” solution $y_1(x) = e^{- a x / 2}$๋ฅผ ๊ตฌํ•œ๋‹ค.

๊ทธ๋ฆฌ๊ณ  ์š” $y_1(x)$์— $x$๋ฅผ ๊ณฑํ•ด์„œ $y_2(x)$๋ฅผ ๊ตฌํ•˜๋ฉด, ๊ทธ๊ฒŒ 2๋ฒˆ์งธ basis๊ฐ€ ๋œ๋‹ค.

$$
y_2(x) = x \cdot y_1(x) = x e^{- a x/ 2}
$$

์‹ค์ œ๋กœ ๊ทธ๋Ÿฐ์ง€ ์ฒดํฌ ํ•ด๋ณด๋ฉด...


<div class="definition" markdown="1">

$$
\begin{aligned}
y_2'
&= 1 \cdot e^{\lambda x} + x \cdot \lambda \cdot e^{\lambda x} \\
&= \left(1 + \lambda x \right) \cdot e^{\lambda x} \\
\end{aligned}
$$

$$
\begin{aligned}
y_2''
&= \lambda \cdot e^{\lambda x} + (1 + \lambda x) \lambda \cdot e^{\lambda x} \\
&= \left( \lambda^2 x + 2 \lambda \right) \cdot e^{\lambda x}
\end{aligned}
$$

๊ณ„์ˆ˜ $a$, $b$๋ฅผ $\lambda$ ๊ธฐ์ค€์œผ๋กœ ๋‹ค์‹œ ์ž‘์„ฑํ•˜๊ณ  ์‹์— ๋Œ€์ž…ํ•ด๋ณด๋ฉด...

- $a = - 2 \lambda$
- $b = a^2 / 4 = \lambda^2$

$$
\begin{aligned}
\left( \lambda^2 x + 2 \lambda \right) \cdot \cancel{e^{\lambda x}} - 2 \lambda \cdot \left(1 + \lambda x \right) \cdot \cancel{e^{\lambda x}} + \lambda^2 \cdot x \cdot \cancel{e^{\lambda x}} &= 0 \\
\left( \lambda^2 x + 2 \lambda \right) - 2 \lambda \cdot \left(1 + \lambda x \right) + \lambda^2 x &= 0 \\
\cancelto{0}{\left( \lambda^2 - 2 \lambda^2 + \lambda^2 \right)} \cdot x + \cancelto{0}{\left( 2 \lambda - 2 \lambda \right)} &= 0
\end{aligned}
$$

๋”ฐ๋ผ์„œ, ์‹์ด ์„ฑ๋ฆฝํ•˜๋ฏ€๋กœ $x e^{\lambda x}$๋Š” ODE์˜ basis์ด๋‹ค. $\blacksquare$

</div>

์ฒซ๋ฒˆ์งธ basis $y_1$์— $x$๋ฅผ ๊ณฑํ•˜๋ฉด ๋‘๋ฒˆ์งธ basis $y_2 = x \cdot y_1$๋ฅผ ๊ตฌํ•˜๋Š” ๊ณผ์ •์ด ๋ญ”๊ฐ€ "๋ฟ…!"ํ•˜๊ณ  ํŠ€์–ด๋‚˜์˜จ ๊ฒƒ ๊ฐ™์ง€๋งŒ ๊ทธ๋ ‡์ง€ ์•Š๋‹ค. "Reduction of Order"๋ผ๋Š” ๋ฐฉ๋ฒ•์„ ์ ์šฉํ•ด์„œ ๊ตฌํ•œ ๊ฒƒ์ด๊ณ , ๊ตฌ์ฒด์ ์ธ ๋ฐฉ๋ฒ•์€ $y'' + p(x) y' + y = 0$ ODE๋ฅผ ํ‘ธ๋Š” ๋ฐฉ๋ฒ•์„ ๋‹ค๋ฃฐ ๋•Œ ์ž์„ธํžˆ ๋ณผ ๊ฒƒ์ด๋‹ค.

### ๋‘ ํ—ˆ๊ทผ

ํ—ˆ์ˆ˜ $i$์— ๋Œ€ํ•œ ๊ฐœ๋…์ด ๋“ค์–ด๊ฐ„๋‹ค.


# General case: Reduction of Order Method


0 comments on commit e4bdd3b

Please sign in to comment.