-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
51c2fbb
commit e4bdd3b
Showing
1 changed file
with
107 additions
and
0 deletions.
There are no files selected for viewing
107 changes: 107 additions & 0 deletions
107
...athematics/differntial-equations/2024-09-30-2nd-order-homogeneous-lienar-ode.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,107 @@ | ||
--- | ||
title: "2nd order Homogeneous Linear ODE" | ||
toc: true | ||
author: bluehorn_math | ||
toc_sticky: true | ||
categories: ["Differential Equations"] | ||
excerpt: "" | ||
--- | ||
|
||
๋ณต์์ ๊ณตํ๊ณ ์๋ ์ํ๊ณผ์ ์กธ์ ์ํ์ ์ํด ํ๋ถ ์ํ ๊ณผ๋ชฉ๋ค์ ๋ค์ ๊ณต๋ถํ๊ณ ์์ต๋๋ค๋ง... ๋ฏธ๋ถ๋ฐฉ์ ์์ ์กธ์ ์ํ ๋์ ๊ณผ๋ชฉ์ด ์๋๋ผ๋ ๊ฑธ ๋์ค์ ์๊ฒ ๋์์ต๋๋ค... OTL... ๊ทธ๋๋ ์ด์ ์์ํ ๊ฑฐ ๋ค์ ๋ณต์ต ์ข ํด๋ด ์๋ค! ๐ [๋ฏธ๋ถ๋ฐฉ์ ์ ํฌ์คํธ ์ ์ฒด ๋ณด๊ธฐ](/categories/differential-equations) | ||
{: .notice--info} | ||
|
||
# ๋ค์ด๊ฐ๋ฉฐ | ||
|
||
์๋์ ๊ฐ์ด ์๊ธด 2nd order homogenous linear ODE์ ํด๋ฅผ ๊ตฌํ๋ ์ผ๋ฐ์ ์ธ ๋ฐฉ๋ฒ์ ๋ํด ๋ค๋ฃฌ๋ค. | ||
|
||
<div class="definition" markdown="1"> | ||
|
||
$$ | ||
y'' + p(x) y' + q(x) y = 0 | ||
$$ | ||
|
||
</div> | ||
|
||
## with constant coefficients | ||
|
||
$$ | ||
y'' + a y' + b y = 0 | ||
$$ | ||
|
||
2nd order homogenous linear ODE์ธ๋ฐ, ๋ง์ฝ ๊ณ์ $p(x) = a$, $q(x) = b$๋ก ์์์ธ ๊ฒฝ์ฐ๋ ํด์ ํํ๋ฅผ ์ฝ๊ฒ ๊ฒฐ์ ํ๋ ๋ฐฉ๋ฒ์ด ์กด์ฌํ๋ค. | ||
|
||
$y = e^{\lambda x}$๋ฅผ ๋์ ํด์ ๋์ค๋ $\lambda$์ ๋ํ 2์ฐจ์์ ํ์ด์ | ||
|
||
$$ | ||
\lambda^2 + a \lambda + b = 0 | ||
$$ | ||
|
||
๊ทธ๊ฒ์ด (1) ๋ ์ค๊ทผ์ธ์ง, (2) ์ค๊ทผ์ธ์ง, (3) ๋ ํ๊ทผ์ธ์ง์ ๋ฐ๋ผ ODE์ ํด๋ฅผ ๊ตฌํ ์ ์๋ค. | ||
|
||
### ๋ ์ค๊ทผ | ||
|
||
์์ฃผ ์ฌ์ด ์ผ์ด์ค๋ก ๊ทธ๋ฅ | ||
|
||
- $y_1(x) = e^{\lambda_1 x}$ | ||
- $y_2(x) = e^{\lambda_2 x}$ | ||
|
||
๋ก ๊ฒฐ์ ๋๋ค. | ||
|
||
### ์ค๊ทผ | ||
|
||
์ด ๊ฒฝ์ฐ๊ฐ ์กฐ๊ธ ๋ณต์กํ๋ฐ, ์ผ๋จ ์ค๊ทผ $\lambda = - a / 2$๋ฅผ ํด๋ก ๊ฐ๋ solution $y_1(x) = e^{- a x / 2}$๋ฅผ ๊ตฌํ๋ค. | ||
|
||
๊ทธ๋ฆฌ๊ณ ์ $y_1(x)$์ $x$๋ฅผ ๊ณฑํด์ $y_2(x)$๋ฅผ ๊ตฌํ๋ฉด, ๊ทธ๊ฒ 2๋ฒ์งธ basis๊ฐ ๋๋ค. | ||
|
||
$$ | ||
y_2(x) = x \cdot y_1(x) = x e^{- a x/ 2} | ||
$$ | ||
|
||
์ค์ ๋ก ๊ทธ๋ฐ์ง ์ฒดํฌ ํด๋ณด๋ฉด... | ||
|
||
|
||
<div class="definition" markdown="1"> | ||
|
||
$$ | ||
\begin{aligned} | ||
y_2' | ||
&= 1 \cdot e^{\lambda x} + x \cdot \lambda \cdot e^{\lambda x} \\ | ||
&= \left(1 + \lambda x \right) \cdot e^{\lambda x} \\ | ||
\end{aligned} | ||
$$ | ||
|
||
$$ | ||
\begin{aligned} | ||
y_2'' | ||
&= \lambda \cdot e^{\lambda x} + (1 + \lambda x) \lambda \cdot e^{\lambda x} \\ | ||
&= \left( \lambda^2 x + 2 \lambda \right) \cdot e^{\lambda x} | ||
\end{aligned} | ||
$$ | ||
|
||
๊ณ์ $a$, $b$๋ฅผ $\lambda$ ๊ธฐ์ค์ผ๋ก ๋ค์ ์์ฑํ๊ณ ์์ ๋์ ํด๋ณด๋ฉด... | ||
|
||
- $a = - 2 \lambda$ | ||
- $b = a^2 / 4 = \lambda^2$ | ||
|
||
$$ | ||
\begin{aligned} | ||
\left( \lambda^2 x + 2 \lambda \right) \cdot \cancel{e^{\lambda x}} - 2 \lambda \cdot \left(1 + \lambda x \right) \cdot \cancel{e^{\lambda x}} + \lambda^2 \cdot x \cdot \cancel{e^{\lambda x}} &= 0 \\ | ||
\left( \lambda^2 x + 2 \lambda \right) - 2 \lambda \cdot \left(1 + \lambda x \right) + \lambda^2 x &= 0 \\ | ||
\cancelto{0}{\left( \lambda^2 - 2 \lambda^2 + \lambda^2 \right)} \cdot x + \cancelto{0}{\left( 2 \lambda - 2 \lambda \right)} &= 0 | ||
\end{aligned} | ||
$$ | ||
|
||
๋ฐ๋ผ์, ์์ด ์ฑ๋ฆฝํ๋ฏ๋ก $x e^{\lambda x}$๋ ODE์ basis์ด๋ค. $\blacksquare$ | ||
|
||
</div> | ||
|
||
์ฒซ๋ฒ์งธ basis $y_1$์ $x$๋ฅผ ๊ณฑํ๋ฉด ๋๋ฒ์งธ basis $y_2 = x \cdot y_1$๋ฅผ ๊ตฌํ๋ ๊ณผ์ ์ด ๋ญ๊ฐ "๋ฟ !"ํ๊ณ ํ์ด๋์จ ๊ฒ ๊ฐ์ง๋ง ๊ทธ๋ ์ง ์๋ค. "Reduction of Order"๋ผ๋ ๋ฐฉ๋ฒ์ ์ ์ฉํด์ ๊ตฌํ ๊ฒ์ด๊ณ , ๊ตฌ์ฒด์ ์ธ ๋ฐฉ๋ฒ์ $y'' + p(x) y' + y = 0$ ODE๋ฅผ ํธ๋ ๋ฐฉ๋ฒ์ ๋ค๋ฃฐ ๋ ์์ธํ ๋ณผ ๊ฒ์ด๋ค. | ||
|
||
### ๋ ํ๊ทผ | ||
|
||
ํ์ $i$์ ๋ํ ๊ฐ๋ ์ด ๋ค์ด๊ฐ๋ค. | ||
|
||
|
||
# General case: Reduction of Order Method | ||
|
||
|