Skip to content

Dimas263/NLP_RE_BERT_Relation_Extraction_Biomedical

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NLP Research

Relation Extraction in Biomedical using Bert-LSTM-CRF model and pytorch

Slamet Riyanto S.Kom., M.M.S.I.

Dimas Dwi Putra

Architecture

Notebook 1

Created using BiomedNLP-PubMedBERT Pre-Trained Model

Notebook 2

Created using Biobert Pre-Trained Model

Config

BioNLP

! python main.py \
--bert_dir=model/BiomedNLP-PubMedBERT/ \
--data_dir=input/data/ \
--log_dir=output/logs/ \
--main_log_dir=output/logs/BiomedNLP-PubMedBERT-main.log \
--preprocess_log_dir=output/logs/BiomedNLP-PubMedBERT-preprocess.log \
--output_dir=output/checkpoint/BiomedNLP-PubMedBERT/ \
--num_tags=4 \
--seed=123 \
--gpu_ids="0" \
--max_seq_len=128 \
--lr=1e-5 \
--other_lr=1e-4 \
--train_batch_size=16 \
--train_epochs=300 \
--eval_batch_size=16 \
--dropout_prob=0.1 \

Biobert

! python main.py \
--bert_dir=model/Biobert/ \
--data_dir=input/data/ \
--log_dir=output/logs/ \
--main_log_dir=output/logs/Biobert-main.log \
--preprocess_log_dir=output/logs/Biobert-preprocess.log \
--output_dir=output/checkpoint/Biobert/ \
--num_tags=4 \
--seed=123 \
--gpu_ids="0" \
--max_seq_len=128 \
--lr=2e-5 \
--other_lr=2e-4 \
--train_batch_size=32 \
--train_epochs=100 \
--eval_batch_size=32 \
--dropout_prob=0.2 \

Dictionary

{"Cause_of_disease": 0, "Treatment_of_disease": 1, "Negative": 2, "Association": 3}

Preprocess

Example

2	The evidence for <e1start> soybean <e1end> products as <e2start> cancer <e2end> preventive agents.  	17	42	55	79
1	[Mortality trends in <e2start> cancer <e2end> attributable to <e1start> tobacco <e1end> in Mexico].  	62	87	21	45
3	<e1start> Areca <e1end> nut chewing has a significant association with <e2start> systemic inflammation <e2end>.	0	23	71	110
...

Model

BioNLP

git clone https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext

Biobert

git clone https://huggingface.co/dmis-lab/biobert-v1.1

Input

text : However, more studies need to further explore the roles of vitex agnus castus in fracture repair processes.

2022-06-14 11:58:56,722 - INFO - preprocess.py - convert_bert_example - 96 - text: [CLS] H o w e v e r, [UNK] m o r e [UNK] s t u d i e s [UNK] n e e d [UNK] t o [UNK] f u r t h e r [UNK] e x p l o r e [UNK] t h e [UNK] r o l e s [UNK] o f [UNK] v i t e x [UNK] a g n u s [UNK] c a s t u s [UNK] i n [UNK] f r a c t u r e [UNK] r e p a i r [UNK] p r o c e s s e s. [UNK] [SEP]
2022-06-14 11:58:56,723 - INFO - preprocess.py - convert_bert_example - 97 - token_ids: [101, 145, 184, 192, 174, 191, 174, 187, 117, 100, 182, 184, 187, 174, 100, 188, 189, 190, 173, 178, 174, 188, 100, 183, 174, 174, 173, 100, 189, 184, 100, 175, 190, 187, 189, 177, 174, 187, 100, 174, 193, 185, 181, 184, 187, 174, 100, 189, 177, 174, 100, 187, 184, 181, 174, 188, 100, 184, 175, 100, 191, 178, 189, 174, 193, 100, 170, 176, 183, 190, 188, 100, 172, 170, 188, 189, 190, 188, 100, 178, 183, 100, 175, 187, 170, 172, 189, 190, 187, 174, 100, 187, 174, 185, 170, 178, 187, 100, 185, 187, 184, 172, 174, 188, 188, 174, 188, 119, 100, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
2022-06-14 11:58:56,723 - INFO - preprocess.py - convert_bert_example - 98 - attention_masks: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
2022-06-14 11:58:56,723 - INFO - preprocess.py - convert_bert_example - 99 - token_type_ids: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
2022-06-14 11:58:56,723 - INFO - preprocess.py - convert_bert_example - 100 - labels: 0
2022-06-14 11:58:56,724 - INFO - preprocess.py - convert_bert_example - 101 - ids: [60, 78, 82, 90]

. . . 

Output

Visualization

BioNLP

Biobert

LOAD MORE..

Train, Test, Predict

Model Input Biobert BiomedNLP-PubMedBERT
Learning Rate 0,00002 0,00001
Other Learning Rate 0,0002 0,0001
Batch Size 32 16
Total Epoch 100 300
Iterasi 6 12
Total Steps 600 3600
Dropout 0,2 0,1
Epoch Ke - 24 226
Step Ke - 145 2723
Train Loss 0,047816 0,000336
Dev Loss 1,50633 3,593393
Accuracy 0,7872 0,7872
Micro F-1 0,7872 0,7872
Macro F-1 0,8393 0,8361
----------------------------------------------- ------------------------------- --------------------------------------
Precision Cause Of Disease 0,9 0,69
Precision Treatment Of Disease 0,88 0,79
Precision Negative 0,63 0,91
Precision Association 1,00 1,00
Precision Macro Average 0,85 0,85
Precision Weighted Average 0,81 0,81
----------------------------------------------- ------------------------------- --------------------------------------
Recall Cause Of Disease 0,75 0,92
Recall Treatment Of Disease 0,79 0,79
Recall Negative 0,80 0,67
Recall Association 1,00 1,00
Recall Macro Average 0,83 0,84
Recall Weighted Average 0,79 0,79
----------------------------------------------- ------------------------------- --------------------------------------
F-1 Cause Of Disease 0,82 0,79
F-1 Treatment Of Disease 0,83 0,79
F-1 Negative 0,71 0,77
F-1 Association 1,00 1,00
F-1 Accuracy 0,79 0,79
F-1 Macro Average 0,84 0,84
F-1 Weighted Average 0,79 0,79
Execution Time (x minutes y second) 10 m 51 s 41 m 7 s
Processor Tesla P100-PCIE-16GB Tesla P100-PCIE-16GB

Prediksi

A lipid-soluble red ginseng extract inhibits the growth of human lung tumor xenografts in nude mice.
torch.Size([1, 4, 768])
predict labels:Treatment_of_disease
true label:Treatment_of_disease

Our data also suggest that bleomycin sensitivity may modulate the effect of tobacco smoking on breast cancer risk.
torch.Size([1, 4, 768])
predict labels:Treatment_of_disease
true label:Cause_of_disease

Mutagen sensitivity, tobacco smoking and breast cancer risk: a case-control study.
torch.Size([1, 4, 768])
predict labels:Treatment_of_disease
true label:Negative

Animals given AFB1 together with fresh garlic or garlic oil showed a significant reduction in tumor incidence.
torch.Size([1, 4, 768])
predict labels:Cause_of_disease
true label:Treatment_of_disease

Animals given AFB1 together with fresh garlic or garlic oil showed a significant reduction in tumor incidence.
torch.Size([1, 4, 768])
predict labels:Cause_of_disease
true label:Treatment_of_disease

Mutagen sensitivity, tobacco smoking and breast cancer risk: a case-control study.
torch.Size([1, 4, 768])
predict labels:Treatment_of_disease
true label:Negative

Output

save model as pytorch file .pt

- 1.3G Jun 27 13:17 Biobert/best.pt
- 1.3G Jun 27 14:17 BiomedNLP-PubMedBERT/best.pt

Other Content

Websites Prediction

Named Entity Recognition (NER)

Relation Extraction (RE)