-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
133 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
% !TeX program = pdflatex | ||
% !TeX root = FCLoopGLILowerDimension.tex | ||
|
||
\documentclass[../FeynCalcManual.tex]{subfiles} | ||
\begin{document} | ||
\hypertarget{fcloopglilowerdimension}{ | ||
\section{FCLoopGLILowerDimension}\label{fcloopglilowerdimension}\index{FCLoopGLILowerDimension}} | ||
|
||
\texttt{FCLoopGLILowerDimension[\allowbreak{}gli,\ \allowbreak{}topo]} | ||
lowers the dimension of the given \texttt{GLI} from \texttt{D} to | ||
\texttt{D-2} and expresses it in terms of \texttt{D}-dimensional loop | ||
integrals returned in the output. | ||
|
||
The algorithm is based on the code of the function \texttt{RaisingDRR} | ||
from R. Lee's LiteRed | ||
|
||
\subsection{See also} | ||
|
||
\hyperlink{toc}{Overview}, | ||
\hyperlink{fcloopgliraisedimension}{FCLoopGLIRaiseDimension}. | ||
|
||
\subsection{Examples} | ||
|
||
\begin{Shaded} | ||
\begin{Highlighting}[] | ||
\NormalTok{topo }\ExtensionTok{=}\NormalTok{ FCTopology}\OperatorTok{[} | ||
\NormalTok{ topo1}\OperatorTok{,} \OperatorTok{\{}\NormalTok{SFAD}\OperatorTok{[}\NormalTok{p1}\OperatorTok{],}\NormalTok{ SFAD}\OperatorTok{[}\NormalTok{p2}\OperatorTok{],}\NormalTok{ SFAD}\OperatorTok{[}\FunctionTok{Q} \SpecialCharTok{{-}}\NormalTok{ p1 }\SpecialCharTok{{-}}\NormalTok{ p2}\OperatorTok{],}\NormalTok{ SFAD}\OperatorTok{[}\FunctionTok{Q} \SpecialCharTok{{-}}\NormalTok{ p2}\OperatorTok{],} | ||
\NormalTok{ SFAD}\OperatorTok{[}\FunctionTok{Q} \SpecialCharTok{{-}}\NormalTok{ p1}\OperatorTok{]\},} \OperatorTok{\{}\NormalTok{p1}\OperatorTok{,}\NormalTok{ p2}\OperatorTok{\},} \OperatorTok{\{}\FunctionTok{Q}\OperatorTok{\},} \OperatorTok{\{}\FunctionTok{Hold}\OperatorTok{[}\NormalTok{SPD}\OperatorTok{[}\FunctionTok{Q}\OperatorTok{]]} \OtherTok{{-}\textgreater{}}\NormalTok{ qq}\OperatorTok{\},} \OperatorTok{\{\}]} | ||
\end{Highlighting} | ||
\end{Shaded} | ||
|
||
\begin{dmath*}\breakingcomma | ||
\text{FCTopology}\left(\text{topo1},\left\{\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+Q)^2+i \eta )},\frac{1}{((Q-\text{p2})^2+i \eta )},\frac{1}{((Q-\text{p1})^2+i \eta )}\right\},\{\text{p1},\text{p2}\},\{Q\},\{\text{Hold}[\text{SPD}(Q)]\to \;\text{qq}\},\{\}\right) | ||
\end{dmath*} | ||
|
||
\begin{Shaded} | ||
\begin{Highlighting}[] | ||
\NormalTok{FCLoopGLILowerDimension}\OperatorTok{[}\NormalTok{GLI}\OperatorTok{[}\NormalTok{topo1}\OperatorTok{,} \OperatorTok{\{}\DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{\}],}\NormalTok{ topo}\OperatorTok{]} | ||
\end{Highlighting} | ||
\end{Shaded} | ||
|
||
\begin{dmath*}\breakingcomma | ||
G^{\text{topo1}}(1,1,1,2,2)+G^{\text{topo1}}(1,1,2,1,2)+G^{\text{topo1}}(1,1,2,2,1)+G^{\text{topo1}}(1,2,1,1,2)+G^{\text{topo1}}(1,2,2,1,1)+G^{\text{topo1}}(2,1,1,2,1)+G^{\text{topo1}}(2,1,2,1,1)+G^{\text{topo1}}(2,2,1,1,1) | ||
\end{dmath*} | ||
|
||
\begin{Shaded} | ||
\begin{Highlighting}[] | ||
\NormalTok{FCLoopGLILowerDimension}\OperatorTok{[}\NormalTok{GLI}\OperatorTok{[}\NormalTok{topo1}\OperatorTok{,} \OperatorTok{\{}\NormalTok{n1}\OperatorTok{,}\NormalTok{ n2}\OperatorTok{,}\NormalTok{ n3}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{\}],}\NormalTok{ topo}\OperatorTok{]} | ||
\end{Highlighting} | ||
\end{Shaded} | ||
|
||
\begin{dmath*}\breakingcomma | ||
G^{\text{topo1}}(\text{n1},\text{n2},\text{n3},2,2)+\text{n3} G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}+1,1,2)+\text{n3} G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}+1,2,1)+\text{n2} G^{\text{topo1}}(\text{n1},\text{n2}+1,\text{n3},1,2)+\text{n2} \;\text{n3} G^{\text{topo1}}(\text{n1},\text{n2}+1,\text{n3}+1,1,1)+\text{n1} G^{\text{topo1}}(\text{n1}+1,\text{n2},\text{n3},2,1)+\text{n1} \;\text{n3} G^{\text{topo1}}(\text{n1}+1,\text{n2},\text{n3}+1,1,1)+\text{n1} \;\text{n2} G^{\text{topo1}}(\text{n1}+1,\text{n2}+1,\text{n3},1,1) | ||
\end{dmath*} | ||
\end{document} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
% !TeX program = pdflatex | ||
% !TeX root = FCLoopGLIRaiseDimension.tex | ||
|
||
\documentclass[../FeynCalcManual.tex]{subfiles} | ||
\begin{document} | ||
\hypertarget{fcloopgliraisedimension}{ | ||
\section{FCLoopGLIRaiseDimension}\label{fcloopgliraisedimension}\index{FCLoopGLIRaiseDimension}} | ||
|
||
\texttt{FCLoopGLIRaiseDimension[\allowbreak{}gli,\ \allowbreak{}topo]} | ||
raises the dimension of the given \texttt{GLI} from N to N+2 and | ||
expresses it in terms of \texttt{N}-dimensional loop integrals returned | ||
in the output. | ||
|
||
The algorithm is based on the code of the function \texttt{RaisingDRR} | ||
from R. Lee's LiteRed | ||
|
||
\subsection{See also} | ||
|
||
\hyperlink{toc}{Overview}, | ||
\hyperlink{fcloopglilowerdimension}{FCLoopGLILowerDimension}. | ||
|
||
\subsection{Examples} | ||
|
||
\begin{Shaded} | ||
\begin{Highlighting}[] | ||
\NormalTok{topo }\ExtensionTok{=}\NormalTok{ FCTopology}\OperatorTok{[} | ||
\NormalTok{ topo1}\OperatorTok{,} \OperatorTok{\{}\NormalTok{SFAD}\OperatorTok{[}\NormalTok{p1}\OperatorTok{],}\NormalTok{ SFAD}\OperatorTok{[}\NormalTok{p2}\OperatorTok{],}\NormalTok{ SFAD}\OperatorTok{[}\FunctionTok{Q} \SpecialCharTok{{-}}\NormalTok{ p1 }\SpecialCharTok{{-}}\NormalTok{ p2}\OperatorTok{],}\NormalTok{ SFAD}\OperatorTok{[}\FunctionTok{Q} \SpecialCharTok{{-}}\NormalTok{ p2}\OperatorTok{],} | ||
\NormalTok{ SFAD}\OperatorTok{[}\FunctionTok{Q} \SpecialCharTok{{-}}\NormalTok{ p1}\OperatorTok{]\},} \OperatorTok{\{}\NormalTok{p1}\OperatorTok{,}\NormalTok{ p2}\OperatorTok{\},} \OperatorTok{\{}\FunctionTok{Q}\OperatorTok{\},} \OperatorTok{\{}\FunctionTok{Hold}\OperatorTok{[}\NormalTok{SPD}\OperatorTok{[}\FunctionTok{Q}\OperatorTok{]]} \OtherTok{{-}\textgreater{}}\NormalTok{ qq}\OperatorTok{\},} \OperatorTok{\{\}]} | ||
\end{Highlighting} | ||
\end{Shaded} | ||
|
||
\begin{dmath*}\breakingcomma | ||
\text{FCTopology}\left(\text{topo1},\left\{\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+Q)^2+i \eta )},\frac{1}{((Q-\text{p2})^2+i \eta )},\frac{1}{((Q-\text{p1})^2+i \eta )}\right\},\{\text{p1},\text{p2}\},\{Q\},\{\text{Hold}[\text{SPD}(Q)]\to \;\text{qq}\},\{\}\right) | ||
\end{dmath*} | ||
|
||
\begin{Shaded} | ||
\begin{Highlighting}[] | ||
\NormalTok{FCLoopGLIRaiseDimension}\OperatorTok{[}\NormalTok{GLI}\OperatorTok{[}\NormalTok{topo1}\OperatorTok{,} \OperatorTok{\{}\DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{\}],}\NormalTok{ topo}\OperatorTok{]} | ||
\end{Highlighting} | ||
\end{Shaded} | ||
|
||
\begin{dmath*}\breakingcomma | ||
-\frac{G^{\text{topo1}}(-1,0,1,1,1)}{(1-D) (2-D) Q^2}-\frac{Q^2 G^{\text{topo1}}(1,1,0,1,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(0,-1,1,1,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(0,0,0,1,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(0,0,1,0,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(0,0,1,1,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(0,1,0,0,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(0,1,1,0,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(1,0,0,1,0)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(1,0,1,0,0)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(1,1,0,0,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(1,1,1,-1,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(1,1,1,0,-1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(0,0,1,1,1)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(0,1,0,1,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(0,1,1,1,0)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(1,0,0,1,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(1,0,1,0,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(1,1,-1,1,1)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(1,1,0,0,1)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(1,1,0,1,0)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(1,1,1,0,0)}{(1-D) (2-D)} | ||
\end{dmath*} | ||
|
||
\begin{Shaded} | ||
\begin{Highlighting}[] | ||
\NormalTok{FCLoopGLIRaiseDimension}\OperatorTok{[}\NormalTok{GLI}\OperatorTok{[}\NormalTok{topo1}\OperatorTok{,} \OperatorTok{\{}\NormalTok{n1}\OperatorTok{,}\NormalTok{ n2}\OperatorTok{,}\NormalTok{ n3}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{\}],}\NormalTok{ topo}\OperatorTok{]} | ||
\end{Highlighting} | ||
\end{Shaded} | ||
|
||
\begin{dmath*}\breakingcomma | ||
-\frac{G^{\text{topo1}}(\text{n1}-2,\text{n2}-1,\text{n3},1,1)}{(1-D) (2-D) Q^2}-\frac{Q^2 G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}-1,1,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2}-2,\text{n3},1,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2}-1,\text{n3}-1,1,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2}-1,\text{n3},0,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2}-1,\text{n3},1,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2},\text{n3}-1,0,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2},\text{n3},0,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(\text{n1},\text{n2}-1,\text{n3}-1,1,0)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(\text{n1},\text{n2}-1,\text{n3},0,0)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}-1,0,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(\text{n1},\text{n2},\text{n3},-1,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(\text{n1},\text{n2},\text{n3},0,-1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2}-1,\text{n3},1,1)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2},\text{n3}-1,1,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2},\text{n3},1,0)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(\text{n1},\text{n2}-1,\text{n3}-1,1,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(\text{n1},\text{n2}-1,\text{n3},0,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}-2,1,1)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}-1,0,1)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}-1,1,0)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(\text{n1},\text{n2},\text{n3},0,0)}{(1-D) (2-D)} | ||
\end{dmath*} | ||
\end{document} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters