Skip to content

Commit

Permalink
Added two more functions.
Browse files Browse the repository at this point in the history
  • Loading branch information
vsht committed Mar 13, 2024
1 parent 5349546 commit 65c9152
Show file tree
Hide file tree
Showing 6 changed files with 133 additions and 12 deletions.
2 changes: 2 additions & 0 deletions includes.tex
Original file line number Diff line number Diff line change
Expand Up @@ -542,6 +542,8 @@ \chapter{Loop integrals}
\subfile{pages/FCLoopGetEtaSigns.tex}
\subfile{pages/FCLoopGetKinematicInvariants.tex}
\subfile{pages/FCLoopGLIDifferentiate.tex}
\subfile{pages/FCLoopGLILowerDimension.tex}
\subfile{pages/FCLoopGLIRaiseDimension.tex}
\subfile{pages/FCLoopAddScalingParameter.tex}
\subfile{pages/FCLoopGLIExpand.tex}
\subfile{pages/FCLoopIBPReducableQ.tex}
Expand Down
55 changes: 55 additions & 0 deletions pages/FCLoopGLILowerDimension.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
% !TeX program = pdflatex
% !TeX root = FCLoopGLILowerDimension.tex

\documentclass[../FeynCalcManual.tex]{subfiles}
\begin{document}
\hypertarget{fcloopglilowerdimension}{
\section{FCLoopGLILowerDimension}\label{fcloopglilowerdimension}\index{FCLoopGLILowerDimension}}

\texttt{FCLoopGLILowerDimension[\allowbreak{}gli,\ \allowbreak{}topo]}
lowers the dimension of the given \texttt{GLI} from \texttt{D} to
\texttt{D-2} and expresses it in terms of \texttt{D}-dimensional loop
integrals returned in the output.

The algorithm is based on the code of the function \texttt{RaisingDRR}
from R. Lee's LiteRed

\subsection{See also}

\hyperlink{toc}{Overview},
\hyperlink{fcloopgliraisedimension}{FCLoopGLIRaiseDimension}.

\subsection{Examples}

\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{topo }\ExtensionTok{=}\NormalTok{ FCTopology}\OperatorTok{[}
\NormalTok{ topo1}\OperatorTok{,} \OperatorTok{\{}\NormalTok{SFAD}\OperatorTok{[}\NormalTok{p1}\OperatorTok{],}\NormalTok{ SFAD}\OperatorTok{[}\NormalTok{p2}\OperatorTok{],}\NormalTok{ SFAD}\OperatorTok{[}\FunctionTok{Q} \SpecialCharTok{{-}}\NormalTok{ p1 }\SpecialCharTok{{-}}\NormalTok{ p2}\OperatorTok{],}\NormalTok{ SFAD}\OperatorTok{[}\FunctionTok{Q} \SpecialCharTok{{-}}\NormalTok{ p2}\OperatorTok{],}
\NormalTok{ SFAD}\OperatorTok{[}\FunctionTok{Q} \SpecialCharTok{{-}}\NormalTok{ p1}\OperatorTok{]\},} \OperatorTok{\{}\NormalTok{p1}\OperatorTok{,}\NormalTok{ p2}\OperatorTok{\},} \OperatorTok{\{}\FunctionTok{Q}\OperatorTok{\},} \OperatorTok{\{}\FunctionTok{Hold}\OperatorTok{[}\NormalTok{SPD}\OperatorTok{[}\FunctionTok{Q}\OperatorTok{]]} \OtherTok{{-}\textgreater{}}\NormalTok{ qq}\OperatorTok{\},} \OperatorTok{\{\}]}
\end{Highlighting}
\end{Shaded}

\begin{dmath*}\breakingcomma
\text{FCTopology}\left(\text{topo1},\left\{\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+Q)^2+i \eta )},\frac{1}{((Q-\text{p2})^2+i \eta )},\frac{1}{((Q-\text{p1})^2+i \eta )}\right\},\{\text{p1},\text{p2}\},\{Q\},\{\text{Hold}[\text{SPD}(Q)]\to \;\text{qq}\},\{\}\right)
\end{dmath*}

\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{FCLoopGLILowerDimension}\OperatorTok{[}\NormalTok{GLI}\OperatorTok{[}\NormalTok{topo1}\OperatorTok{,} \OperatorTok{\{}\DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{\}],}\NormalTok{ topo}\OperatorTok{]}
\end{Highlighting}
\end{Shaded}

\begin{dmath*}\breakingcomma
G^{\text{topo1}}(1,1,1,2,2)+G^{\text{topo1}}(1,1,2,1,2)+G^{\text{topo1}}(1,1,2,2,1)+G^{\text{topo1}}(1,2,1,1,2)+G^{\text{topo1}}(1,2,2,1,1)+G^{\text{topo1}}(2,1,1,2,1)+G^{\text{topo1}}(2,1,2,1,1)+G^{\text{topo1}}(2,2,1,1,1)
\end{dmath*}

\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{FCLoopGLILowerDimension}\OperatorTok{[}\NormalTok{GLI}\OperatorTok{[}\NormalTok{topo1}\OperatorTok{,} \OperatorTok{\{}\NormalTok{n1}\OperatorTok{,}\NormalTok{ n2}\OperatorTok{,}\NormalTok{ n3}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{\}],}\NormalTok{ topo}\OperatorTok{]}
\end{Highlighting}
\end{Shaded}

\begin{dmath*}\breakingcomma
G^{\text{topo1}}(\text{n1},\text{n2},\text{n3},2,2)+\text{n3} G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}+1,1,2)+\text{n3} G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}+1,2,1)+\text{n2} G^{\text{topo1}}(\text{n1},\text{n2}+1,\text{n3},1,2)+\text{n2} \;\text{n3} G^{\text{topo1}}(\text{n1},\text{n2}+1,\text{n3}+1,1,1)+\text{n1} G^{\text{topo1}}(\text{n1}+1,\text{n2},\text{n3},2,1)+\text{n1} \;\text{n3} G^{\text{topo1}}(\text{n1}+1,\text{n2},\text{n3}+1,1,1)+\text{n1} \;\text{n2} G^{\text{topo1}}(\text{n1}+1,\text{n2}+1,\text{n3},1,1)
\end{dmath*}
\end{document}
55 changes: 55 additions & 0 deletions pages/FCLoopGLIRaiseDimension.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
% !TeX program = pdflatex
% !TeX root = FCLoopGLIRaiseDimension.tex

\documentclass[../FeynCalcManual.tex]{subfiles}
\begin{document}
\hypertarget{fcloopgliraisedimension}{
\section{FCLoopGLIRaiseDimension}\label{fcloopgliraisedimension}\index{FCLoopGLIRaiseDimension}}

\texttt{FCLoopGLIRaiseDimension[\allowbreak{}gli,\ \allowbreak{}topo]}
raises the dimension of the given \texttt{GLI} from N to N+2 and
expresses it in terms of \texttt{N}-dimensional loop integrals returned
in the output.

The algorithm is based on the code of the function \texttt{RaisingDRR}
from R. Lee's LiteRed

\subsection{See also}

\hyperlink{toc}{Overview},
\hyperlink{fcloopglilowerdimension}{FCLoopGLILowerDimension}.

\subsection{Examples}

\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{topo }\ExtensionTok{=}\NormalTok{ FCTopology}\OperatorTok{[}
\NormalTok{ topo1}\OperatorTok{,} \OperatorTok{\{}\NormalTok{SFAD}\OperatorTok{[}\NormalTok{p1}\OperatorTok{],}\NormalTok{ SFAD}\OperatorTok{[}\NormalTok{p2}\OperatorTok{],}\NormalTok{ SFAD}\OperatorTok{[}\FunctionTok{Q} \SpecialCharTok{{-}}\NormalTok{ p1 }\SpecialCharTok{{-}}\NormalTok{ p2}\OperatorTok{],}\NormalTok{ SFAD}\OperatorTok{[}\FunctionTok{Q} \SpecialCharTok{{-}}\NormalTok{ p2}\OperatorTok{],}
\NormalTok{ SFAD}\OperatorTok{[}\FunctionTok{Q} \SpecialCharTok{{-}}\NormalTok{ p1}\OperatorTok{]\},} \OperatorTok{\{}\NormalTok{p1}\OperatorTok{,}\NormalTok{ p2}\OperatorTok{\},} \OperatorTok{\{}\FunctionTok{Q}\OperatorTok{\},} \OperatorTok{\{}\FunctionTok{Hold}\OperatorTok{[}\NormalTok{SPD}\OperatorTok{[}\FunctionTok{Q}\OperatorTok{]]} \OtherTok{{-}\textgreater{}}\NormalTok{ qq}\OperatorTok{\},} \OperatorTok{\{\}]}
\end{Highlighting}
\end{Shaded}

\begin{dmath*}\breakingcomma
\text{FCTopology}\left(\text{topo1},\left\{\frac{1}{(\text{p1}^2+i \eta )},\frac{1}{(\text{p2}^2+i \eta )},\frac{1}{((-\text{p1}-\text{p2}+Q)^2+i \eta )},\frac{1}{((Q-\text{p2})^2+i \eta )},\frac{1}{((Q-\text{p1})^2+i \eta )}\right\},\{\text{p1},\text{p2}\},\{Q\},\{\text{Hold}[\text{SPD}(Q)]\to \;\text{qq}\},\{\}\right)
\end{dmath*}

\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{FCLoopGLIRaiseDimension}\OperatorTok{[}\NormalTok{GLI}\OperatorTok{[}\NormalTok{topo1}\OperatorTok{,} \OperatorTok{\{}\DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{\}],}\NormalTok{ topo}\OperatorTok{]}
\end{Highlighting}
\end{Shaded}

\begin{dmath*}\breakingcomma
-\frac{G^{\text{topo1}}(-1,0,1,1,1)}{(1-D) (2-D) Q^2}-\frac{Q^2 G^{\text{topo1}}(1,1,0,1,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(0,-1,1,1,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(0,0,0,1,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(0,0,1,0,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(0,0,1,1,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(0,1,0,0,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(0,1,1,0,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(1,0,0,1,0)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(1,0,1,0,0)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(1,1,0,0,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(1,1,1,-1,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(1,1,1,0,-1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(0,0,1,1,1)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(0,1,0,1,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(0,1,1,1,0)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(1,0,0,1,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(1,0,1,0,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(1,1,-1,1,1)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(1,1,0,0,1)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(1,1,0,1,0)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(1,1,1,0,0)}{(1-D) (2-D)}
\end{dmath*}

\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{FCLoopGLIRaiseDimension}\OperatorTok{[}\NormalTok{GLI}\OperatorTok{[}\NormalTok{topo1}\OperatorTok{,} \OperatorTok{\{}\NormalTok{n1}\OperatorTok{,}\NormalTok{ n2}\OperatorTok{,}\NormalTok{ n3}\OperatorTok{,} \DecValTok{1}\OperatorTok{,} \DecValTok{1}\OperatorTok{\}],}\NormalTok{ topo}\OperatorTok{]}
\end{Highlighting}
\end{Shaded}

\begin{dmath*}\breakingcomma
-\frac{G^{\text{topo1}}(\text{n1}-2,\text{n2}-1,\text{n3},1,1)}{(1-D) (2-D) Q^2}-\frac{Q^2 G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}-1,1,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2}-2,\text{n3},1,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2}-1,\text{n3}-1,1,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2}-1,\text{n3},0,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2}-1,\text{n3},1,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2},\text{n3}-1,0,1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2},\text{n3},0,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(\text{n1},\text{n2}-1,\text{n3}-1,1,0)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(\text{n1},\text{n2}-1,\text{n3},0,0)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}-1,0,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(\text{n1},\text{n2},\text{n3},-1,0)}{(1-D) (2-D) Q^2}-\frac{G^{\text{topo1}}(\text{n1},\text{n2},\text{n3},0,-1)}{(1-D) (2-D) Q^2}+\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2}-1,\text{n3},1,1)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2},\text{n3}-1,1,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(\text{n1}-1,\text{n2},\text{n3},1,0)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(\text{n1},\text{n2}-1,\text{n3}-1,1,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(\text{n1},\text{n2}-1,\text{n3},0,1)}{(1-D) (2-D)}-\frac{G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}-2,1,1)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}-1,0,1)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(\text{n1},\text{n2},\text{n3}-1,1,0)}{(1-D) (2-D)}+\frac{G^{\text{topo1}}(\text{n1},\text{n2},\text{n3},0,0)}{(1-D) (2-D)}
\end{dmath*}
\end{document}
5 changes: 5 additions & 0 deletions pages/FeynCalc.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1107,6 +1107,11 @@ \section{Loop integrals}\label{loop integrals}\index{Loop integrals}}
\hyperlink{../fcloopglidifferentiate}{../FCLoopGLIDifferentiate} -
differentiates \hyperlink{../gli}{../GLI}s with respect to a scalar
variable.
\item
\hyperlink{../fcloopglilowerdimension}{../FCLoopGLILowerDimension},
\hyperlink{../fcloopgliraisedimension}{../FCLoopGLIRaiseDimension} -
shifts dimensions of \hyperlink{../gli}{../GLI}s to \(D-2\) or
\(D+2\).
\item
\hyperlink{../fcloopaddscalingparameter}{../FCLoopAddScalingParameter},
\hyperlink{../fcloopgliexpand}{../FCLoopGLIExpand} - series expansion
Expand Down
8 changes: 5 additions & 3 deletions pages/FrequentlyAskedQuestions.tex
Original file line number Diff line number Diff line change
Expand Up @@ -444,9 +444,11 @@ \subsection{How can I define a complex four
The presence of an explicit \texttt{I} will make this vector change
under \texttt{ComplexConjugate}, such that
\begin{verbatim}
ComplexConjugate[FV[{a,I},mu]]//FCE
\end{verbatim}
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{ComplexConjugate}\OperatorTok{[}\NormalTok{FV}\OperatorTok{[\{}\FunctionTok{a}\OperatorTok{,}\FunctionTok{I}\OperatorTok{\},}\NormalTok{mu}\OperatorTok{]]}\SpecialCharTok{//}\NormalTok{FCE}
\end{Highlighting}
\end{Shaded}
will give you
\texttt{FV[\allowbreak{}\{\allowbreak{}a,\ \allowbreak{}-I\},\ \allowbreak{}mu]}.
Expand Down
20 changes: 11 additions & 9 deletions pages/Renormalization.tex
Original file line number Diff line number Diff line change
Expand Up @@ -193,11 +193,13 @@ \subsection{Feynman rules}\label{feynman-rules}}
\texttt{WriteFeynArtsOutput} we need to set the global variable
\texttt{FR\$Loop} to \texttt{True}. For example,
\begin{verbatim}
FR$Loop=True;
SetDirectory[FileNameJoin[{$UserBaseDirectory,"Applications","FeynCalc","FeynArts","Models"}]];
WriteFeynArtsOutput[LPhi4,Output->"Phi4",CouplingRename->False];
\end{verbatim}
\begin{Shaded}
\begin{Highlighting}[]
\NormalTok{FR$Loop}\ExtensionTok{=}\ConstantTok{True}\NormalTok{;}
\FunctionTok{SetDirectory}\OperatorTok{[}\FunctionTok{FileNameJoin}\OperatorTok{[\{}\VariableTok{$UserBaseDirectory}\OperatorTok{,}\StringTok{"Applications"}\OperatorTok{,}\StringTok{"FeynCalc"}\OperatorTok{,}\StringTok{"FeynArts"}\OperatorTok{,}\StringTok{"Models"}\OperatorTok{\}]]}\NormalTok{;}
\NormalTok{WriteFeynArtsOutput}\OperatorTok{[}\NormalTok{LPhi4}\OperatorTok{,}\NormalTok{Output}\OtherTok{{-}\textgreater{}}\StringTok{"Phi4"}\OperatorTok{,}\NormalTok{CouplingRename}\OtherTok{{-}\textgreater{}}\ConstantTok{False}\OperatorTok{]}\NormalTok{;}
\end{Highlighting}
\end{Shaded}
\hypertarget{renormalization-schemes}{%
\subsection{Renormalization schemes}\label{renormalization-schemes}}
Expand Down Expand Up @@ -320,13 +322,13 @@ \subsubsection{Renormalization conditions for the OS
and the renormalized one reads
\begin{equation}
\Gamma_R^{\mu \nu} (q) = \Gamma^{\mu \nu} (q) + \text{CT}.
\Gamma_R^{\mu \nu} (q) = \Gamma^{\mu \nu} (q) + \;\text{CT}.
\end{equation}
For convenience we also introduce
\begin{equation}
\tilde{\Gamma}^{\mu \nu}_R(q) = - \Pi^{\mu \nu} (q) + \text{CT}
\tilde{\Gamma}^{\mu \nu}_R(q) = - \Pi^{\mu \nu} (q) + \;\text{CT}
\end{equation}
which corresponds to what one actually calculates when considering the
Expand Down Expand Up @@ -438,13 +440,13 @@ \subsubsection{Renormalization conditions for the OS
and the renormalized one reads
\begin{equation}
\Gamma_R^{\mu \nu} (q) = \Gamma^{\mu \nu} (q) + \text{CT}
\Gamma_R^{\mu \nu} (q) = \Gamma^{\mu \nu} (q) + \;\text{CT}
\end{equation}
For convenience we also introduce
\begin{equation}
\tilde{\Gamma}^{\mu \nu}_R(q) = - \Pi^{\mu \nu} (q) + \text{CT}
\tilde{\Gamma}^{\mu \nu}_R(q) = - \Pi^{\mu \nu} (q) + \;\text{CT}
\end{equation}
which corresponds to what one actually calculates when considering the
Expand Down

0 comments on commit 65c9152

Please sign in to comment.