Skip to content

PEGG-Net: Pixel-Wise Efficient Grasp Generation in Complex Scenes (IEEE CIS-RAM 2024)

License

Notifications You must be signed in to change notification settings

HZWang96/PEGG-Net

Repository files navigation

PEGG-Net

This repository contains the official implementation of PEGG-Net from the paper:

PEGG-Net: Pixel-Wise Efficient Grasp Generation in Complex Scenes

Haozhe Wang, Zhiyang Liu, Lei Zhou, Huan Yin and Marcelo H. Ang Jr.

2024 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM)

[Paper][Demo Video]

Please clone this GitHub repo before proceeding with the installation.

git clone https://github.com/HZWang96/PEGG-Net.git

Installation using Anaconda

The code was tested on Ubuntu 18.04, with Python 3.6 and PyTorch 1.7.0 (CUDA 11.0). NVIDIA GPUs are needed for both training and testing.

  1. Create a new conda environment

    conda create --name peggnet python=3.6
  2. Install PyTorch 1.7.0 for CUDA 11.0

    conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
  3. Install the required Python packages

    pip install -r requirements.txt

Installation using Docker

  1. Install the NVIDIA container toolkit

  2. Pull the PyTorch 1.7.0 docker image from docker hub

    docker pull pytorch/pytorch:1.7.0-cuda11.0-cudnn8-devel
  3. Run the following command to start the docker container

    nvidia-docker run --gpus all --ipc host -it -v <path/to/local/directory>:<workspace/in/docker/container> pytorch/pytorch:1.7.0-cuda11.0-cudnn8-devel bash
  4. Configure the docker container by running the following commands:

    chmod 755 docker_config
    ./docker_config

Dataset Preparation

  1. Download and extract the Cornell Grasping Dataset.

  2. Download and extract the Jacquard Dataset.

  3. For the Cornell and Jacquard dataset, the folders containing the images and labels should be arranged in the following manner:

    PEGG-Net
    | - - data
     `- - | - - cornell
          |  `- - | - - 01
          |       | - - 02
          |       | - - 03
          |       | - - 04
          |       | - - 05
          |       | - - 06
          |       | - - 07
          |       | - - 08
          |       | - - 09
          |       | - - 10
          |        ` - - backgrounds
          ` - - jacquard
            ` - - | - - Jacquard_Dataset_0
                  | - - Jacquard_Dataset_1
                  | - - Jacquard_Dataset_2
                  | - - Jacquard_Dataset_3
                  | - - Jacquard_Dataset_4
                  | - - Jacquard_Dataset_5
                  | - - Jacquard_Dataset_6
                  | - - Jacquard_Dataset_7
                  | - - Jacquard_Dataset_8
                  | - - Jacquard_Dataset_9
                  | - - Jacquard_Dataset_10
                   ` - - Jacquard_Dataset_11
    
  4. For the Cornell Grasping Dataset. convert the PCD files (pcdXXXX.txt) to depth images by running

    python -m utils.dataset_preprocessing.generate_cornell_depth data/cornell

Training

Run train.py --help to see the full list of options and description for each option.

.A basic example would be:

python train.py --description <write a description> --network peggnet --dataset cornell --dataset-path data/cornell --use-rgb 1 --use-depth 0

For training on an image-wise split using the Cornell dataset:

python train.py --description peggnet_iw_rgb_304 --network peggnet --dataset cornell --dataset-path data/cornell --image-wise --use-depth 0 --use-rgb 1 --num-workers 4 --input-size 304

Some important flags are:

  • --dataset to select the dataset you want to use for training.
  • --dataset-path to provide the path to the selected dataset.
  • --random-seed to train the network using an image-wise split.
  • --augment to use random rotations and zooms to augment the dataset.
  • --input-size to change the size of the input image. Note that the input image must be a multiple of 8
  • --use-rgb to use RGB images during training. Set 1 for true and 0 for false.
  • --use-depth to use depth images during training. Set 1 for true and 0 for false.

To train on the Cornell Grasping Dataset using only RGB or depth images, you can use the default hyperparameters and include the --augment flag.

For training on the Cornell Grasping Dataset using the image-wise split, add the --image-wise flag. The random seed (--random-seed) used for shuffling the dataset is 10.

When training using the Jacquard dataset, do not use the --augment flag.

To train on the Jacquard Grasping Dataset using only RGB or depth images, you can use the default hyperparameters without the --augment flag.

To train on the Cornell Grasping Dataset or the Jacquard dataset using RGB-D images, change the following hyperparameters:

  1. Set --lr 0.01
  2. Set --lr-step 25,40

The trained models will be stored in the output/models directory. The TensorBoard log files for each training session will be stored in the tensorboard directory.

Evaluation/Visualization

Run eval.py --help to see the full list of options and description for each option.

Some important flags are:

  • --iou-eval to evaluate using the IoU between grasping rectangles metric
  • --jacquard-ouptut to generate output files in the format required for simulated testing against the Jacquard dataset.
  • --vis to plot the network output and predicted grasp rectangles

A basic example would be:

python eval.py --network <path to trained network> --dataset jacquard --dataset-path data/jacquard --jacquard-output --iou-eval

Running the PEGG-Net Grasping System on the Kinova Movo Robot

Connect network of the inference PC to the Movo2 PC and set the Movo2 PC as ROS Master.

Bring up RGB-D aligned realsense camera ROS node:

roslaunch realsense2_camera rs_aligned_depth.launch

Or bring up realsense camera ROS node for depth-only prediction:

roslaunch realsense2_camera rs_camera.launch

To publish tf info of right end-effector in right_base_link frame and calibrated camera extrinsics:

movo_tf_publisher/right_base_link.py
movo_tf_publisher/camera_calibration.py

To implement prediction with RGB-D input and send results to the control system:

python pegg_rgbd_prediction.py

Or to implement prediction with depth-only input and send results to the control system:

python pegg_d_prediction.py

To start control system:

python pegg_movo_control.py

Citation

If you find our work useful for your research, please consider citing the following BibTeX entry:

@INPROCEEDINGS{10672873,
  author={Wang, Haozhe and Liu, Zhiyang and Zhou, Lei and Yin, Huan and Ang, Marcelo H.},
  booktitle={2024 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE International Conference on Robotics, Automation and Mechatronics (RAM)}, 
  title={PEGG-Net: Pixel-Wise Efficient Grasp Generation in Complex Scenes}, 
  year={2024},
  volume={},
  number={},
  pages={199-206},
  keywords={Mechatronics;Heuristic algorithms;Estimation;Random access memory;Grasping;Robustness;Visual servoing;Manipulation and Grasping;Visual Perception and Learning},
  doi={10.1109/CIS-RAM61939.2024.10672873}}

About

PEGG-Net: Pixel-Wise Efficient Grasp Generation in Complex Scenes (IEEE CIS-RAM 2024)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published