Skip to content

Commit

Permalink
AmiciObjective/PEtab import: Fix plist
Browse files Browse the repository at this point in the history
For further background, see #1448.

We don't have to compute the full gradient in every model simulation. Some entries might not be required because of fixed parameter or some condition-specific objective parameter mapping. The former was supported (however, not tested), the latter was not supported. Now both are tested an supported.

There was no good way to communicate the fixed parameters to AmiciCalculator where ExpData.plist gets set. Passing this information is currently only possible through the parameter mapping, based on which the required sensitivities are determined. Therefore, in addition to the general parameter mapping, there is now a parameter mapping that accounts for the fixed parameters. Not sure what could be a more elegant way to handle that.
  • Loading branch information
dweindl committed Oct 23, 2024
1 parent 58c7b5f commit 59f78ed
Show file tree
Hide file tree
Showing 2 changed files with 102 additions and 23 deletions.
41 changes: 40 additions & 1 deletion pypesto/objective/amici/amici.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,8 +178,12 @@ def __init__(
parameter_mapping = create_identity_parameter_mapping(
amici_model, len(edatas)
)
# parameter mapping where IDs of the currently fixed parameters
# have been replaced by their respective values
# (relevant for setting ``plist`` in ExpData later on)
self.parameter_mapping = parameter_mapping

# parameter mapping independent of fixed parameters
self._parameter_mapping_full = copy.deepcopy(parameter_mapping)
# If supported, enable `guess_steadystate` by default. If not
# supported, disable by default. If requested but unsupported, raise.
if (
Expand Down Expand Up @@ -654,3 +658,38 @@ def check_gradients_match_finite_differences(
return super().check_gradients_match_finite_differences(
*args, x=x, x_free=x_free, **kwargs
)

def update_from_problem(
self,
dim_full: int,
x_free_indices: Sequence[int],
x_fixed_indices: Sequence[int],
x_fixed_vals: Sequence[float],
):
"""Handle fixed parameters."""
super().update_from_problem(
dim_full=dim_full,
x_free_indices=x_free_indices,
x_fixed_indices=x_fixed_indices,
x_fixed_vals=x_fixed_vals,
)

# To make amici aware of fixed parameters, and thus, avoid computing
# unnecessary sensitivities, we need to update the parameter mapping
# and replace the IDs of all fixed parameters by their respective
# values.
self.parameter_mapping = copy.deepcopy(self._parameter_mapping_full)
if not len(x_fixed_indices):
return

id_to_val = {
self.x_ids[x_idx]: x_val
for x_idx, x_val in zip(x_fixed_indices, x_fixed_vals)
}
for condition_mapping in self.parameter_mapping:
for (
model_par,
mapped_to_par,
) in condition_mapping.map_sim_var.items():
if (val := id_to_val.get(mapped_to_par)) is not None:
condition_mapping.map_sim_var[model_par] = val
84 changes: 62 additions & 22 deletions test/petab/test_petab_import.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
import logging
import os
import unittest
from itertools import chain

import amici
import benchmark_models_petab as models
Expand All @@ -18,8 +19,6 @@
import pypesto.petab
from pypesto.petab import PetabImporter

from .test_sbml_conversion import ATOL, RTOL

# In CI, bionetgen is installed here
BNGPATH = os.path.abspath(
os.path.join(os.path.dirname(__file__), "..", "..", "BioNetGen-2.8.5")
Expand Down Expand Up @@ -119,7 +118,7 @@ def test_check_gradients(self):
# Check gradients of simple model (should always be a true positive)
model_name = "Boehm_JProteomeRes2014"
importer = pypesto.petab.PetabImporter.from_yaml(
os.path.join(models.MODELS_DIR, model_name, model_name + ".yaml")
models.get_problem_yaml_path(model_name)
)

objective = importer.create_problem().objective
Expand All @@ -137,35 +136,76 @@ def test_check_gradients(self):


def test_plist_mapping():
"""Test that the AMICI objective created via PEtab correctly maps
gradient entries when some parameters are not estimated (realized via
edata.plist)."""
model_name = "Boehm_JProteomeRes2014"
petab_problem = pypesto.petab.PetabImporter.from_yaml(
"""Test that the AMICI objective created via PEtab correctly uses
ExpData.plist.
That means, ensure that
1) it only computes gradient entries that are really required, and
2) correctly maps model-gradient entries to the objective gradient
3) with or without pypesto-fixed parameters.
In Bruno_JExpBot2016, different parameters are estimated in different
conditions.
"""
model_name = "Bruno_JExpBot2016"
petab_importer = pypesto.petab.PetabImporter.from_yaml(
os.path.join(models.MODELS_DIR, model_name, model_name + ".yaml")
)

# define test parameter
par = np.asarray(petab_problem.petab_problem.x_nominal_scaled)

problem = petab_problem.create_problem()
objective_creator = petab_importer.create_objective_creator()
problem = petab_importer.create_problem(
objective_creator.create_objective()
)
objective = problem.objective
# check that x_names are correctly subsetted
assert objective.x_names == [
problem.x_names[ix] for ix in problem.x_free_indices
]
objective.amici_solver.setSensitivityMethod(
amici.SensitivityMethod_forward
amici.SensitivityMethod.forward
)
objective.amici_solver.setAbsoluteTolerance(1e-10)
objective.amici_solver.setRelativeTolerance(1e-12)
objective.amici_solver.setAbsoluteTolerance(1e-16)
objective.amici_solver.setRelativeTolerance(1e-15)

# slightly perturb the parameters to avoid vanishing gradients
par = np.asarray(petab_importer.petab_problem.x_nominal_free_scaled) * 1.01

# call once to make sure ExpDatas are populated
fx1, grad1 = objective(par, sensi_orders=(0, 1))

plists1 = {edata.plist for edata in objective.edatas}
assert len(plists1) == 6, plists1

df = objective.check_grad_multi_eps(
par[problem.x_free_indices], multi_eps=[1e-3, 1e-4, 1e-5]
par[problem.x_free_indices], multi_eps=[1e-5, 1e-6, 1e-7, 1e-8]
)
print("relative errors gradient: ", df.rel_err.values)
print("absolute errors gradient: ", df.abs_err.values)
assert np.all((df.rel_err.values < RTOL) | (df.abs_err.values < ATOL))
assert np.all((df.rel_err.values < 1e-8) | (df.abs_err.values < 1e-10))

# do the same after fixing some parameters
# we fix them to the previous values, so we can compare the results
fixed_ids = ["init_b10_1", "init_bcry_1"]
# the corresponding amici parameters (they are only ever mapped to the
# respective parameters in fixed_ids, and thus, should not occur in any
# `plist` later on)
fixed_model_par_ids = ["init_b10", "init_bcry"]
fixed_model_par_idxs = [
objective.amici_model.getParameterIds().index(id)
for id in fixed_model_par_ids
]
fixed_idxs = [problem.x_names.index(id) for id in fixed_ids]
problem.fix_parameters(fixed_idxs, par[fixed_idxs])
assert objective is problem.objective
assert problem.x_fixed_indices == fixed_idxs
fx2, grad2 = objective(par[problem.x_free_indices], sensi_orders=(0, 1))
assert np.isclose(fx1, fx2, rtol=1e-10, atol=1e-14)
assert np.allclose(
grad1[problem.x_free_indices], grad2, rtol=1e-10, atol=1e-14
)
plists2 = {edata.plist for edata in objective.edatas}
# the fixed parameters should have been in plist1, but not in plist2
assert (
set(fixed_model_par_idxs) - set(chain.from_iterable(plists1)) == set()
)
assert (
set(fixed_model_par_idxs) & set(chain.from_iterable(plists2)) == set()
)


def test_max_sensi_order():
Expand Down

0 comments on commit 59f78ed

Please sign in to comment.