Skip to content

A generalized method for computing an average and statistical response corridors from experimental signals. Now in Python!

License

Notifications You must be signed in to change notification settings

IMMC-UWaterloo/ARCGen-Python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ARCGen-Python - General, Feature-Based Corridor Generation

ARCGen Logo

Note

ARCGen-Python is a port of the original ARCGen for MATLAB. The python version of ACRGen is not updated as regularly as as MATLAB source code.

ARCGen is a general, robust methodology providing feature-based assessment of average response and variability in the form of a characteristic average response and statistical response corridors. In particular, ARCGen is well suited to tackling the challenging types of signals common in biomechanics, such as:

  • Monotonic signals that do not share a common termination point
  • Highly oscillatory signals, such as those that capture head or limb kinematics
  • Hysteretic signals or signals that are non-monotonic in both axes

ARCGen is released under the open-sourced GNU GPL v3 license. No warranty or guarantee of support is provided. The authors hold no responsibility for the validity, accuracy, or applicability of any results obtained from this code.

Installation

ARCGen-Python is available for Python 3.10+ and is installed directly fron PyPI as follows :

pip install arcgen-python

Usage

ARCGen is used by calling the arcgen() function within a python script, as follows. ARCGen has one required input parameter (inputData) and a host of optional keyword arguments that provide important control over arc-length re-parameterization and signal registration. An example of ARCGen used in code with typical name-value pair arguments is provided below.

charAvg, innCorr, outCorr, processed, debug = arcgen(
    inputData,
    nResamplePoints=250,
    CorridorRes=250,
    nWarpCtrlPts=2,
    WarpingPenalty=1e-2,
)

Complete documentation of all of ARCGen's input arguments and outputs is available below and in the code. Several example cases are provided in the ExampleCasesAndDatasets folder of this repository.

Input Arguments

inputData: Contains the signals from which a characteristic average and corridors can be computed. Signals must be two-dimensional (i.e. acceleration-time, force-displacement) but do not need to contain the same number of points or be sampled at the same sampling frequency. There is no limit to the number of input signals ARCGen can accommodate, but runtime will increase as the number of signals increases. inputSignals must be defined in one of the following three formats.

  • a string of the path to a CSV file containing all signals stacked columnwise.
  • A list of np.ndarrays, where each entry of the list is a two-column ndarray containing signal points
  • A list of dictionaries, where each entry is a dictionary containing the signal points and a signal identifier. Dictionary format is {'data': np.ndarray, 'specId': str}, where 'data' is a two-column array of signal points and str is a string used as the signal identifier.

The remaining parameters are optional and have defined default values in 'arcgen()' if not used.

nResamplePoints: An integer defining the number of points re-parameterized signals will contain. Increasing this value will provide a smoother characteristic average and corridors. Default: 250.

CorridorRes: An integer defining the number of grid points the marching squares algorithm uses to extract the corridor. This sampling grid is automatically calculated based on the most extreme possible corridor values. Increasing this value will improve how accurately the corridor is extracted. Default: 250.

NormalizeSignals: A character array used to control whether magnitude normalization is performed before arc-length re-parameterization. It is highly recommended that this option is enabled. Input options: 'on' (default), 'off'

EllipseKFact: A float used to scale the size of the ellipses defined by the confidence region at each point of the characteristic average. A value of 1.0 creates a corridor that is one standard deviation wide at each point of the characteristic average. Default: 1.0 (or corridors of plus and minus one standard deviation).

MinCorridorWidth: A float value used to enforce a minimum corridor width based on maximum standard deviation. This option can be useful if corridors do not extend to the beginning or end of the characteristic average due to low variability between input signals. However, enforcing a minimum width is not representative of the actual variability of underlying data. Default: 0.0 (does not enforce a minimum corridor width).

nWarpCtrlPts: An integer defining the number of interior control points used for signal registration. A value of 0 disables signal registration. Default: 2 (some warping).

WarpingPenalty: A float defining the penalty factor used during signal registration. Default: 1e-2.

Diagnostics: A character array used to activate diagnostic plots. Useful for tracing anomalous behaviours. Options: 'off' (default), 'on', 'detailed'.

resultsToFile: A boolean flag indicating if arcgen() should print results to file. If True, arcgen() will output the characteristic average and corridors to a csv file in a folder called 'outputs' in the current working directory. arcgen() will also output a plot of the inputsignals superimposed with the characteristic average and corridors in the same directory. Default: False

Outputs

charAvg: A two-column array containing the computed characteristic average

innerCorr: A two-column array defining the inner or lower portion of the corridor

outerCorr: A two-column array defining the outer or upper portion of the corridor

processedSignals: Contains information about processed signals. Formatted as a list of dictionaries, where each each signal has its own entry in the list and its own dictionary. All dictionaries are defined as {'data': np.ndarray, 'specId': str, 'xMax': float,'xMin': float, 'yMax': float, 'yMin': float, 'maxAlen': float, 'resampled': np.ndarray, 'warpControlPoints': np.ndarray}.

  • data: Four column array contianing original x,y data (cols 0,1), computed arc-length (col 2) and normalized arc-length (col 3)
  • specId: signal identifer
  • *Max, *Min: maximum and minimum (x,y) values of each signal.
  • maxAlen: total normalized arc-length of the signal
  • 'resampled': Three column array of the re-parameterized, registered signal. Col 0: normalized arc-length, Col 1, 2: x,y data
  • warpControlPoints': Two column array of control points used during signal registration

debug: Dictionary containing information potential useful for debugging. Dictionary is defined as {'charAvg': np.ndarray, 'stDev': np.ndarray, 'preWarpCorrArray': np.ndarray, 'preWarpMeanCorr': float, 'warpedCorrArray': np.ndarray, warpedMeanCorrScore': float} where

  • charAvg: Two column array of the characteristic average (repeated from first positional output)
  • stDev: two column array containing the standard devation in x and y for each corresponding point in the characteristic average
  • preWarpCorrArray: x and y correlation scores prior to performing signal registration
  • preWarpmeanCorr: mean correlation score prior to peforming signal registration
  • warpedCorrArray: x and y correlation scores after performing signal registration
  • warpedMeanCorrScore: mean correlation score after performing signal registration

Referencing

If you use ARCGen-Python in published research, please use the following citation in your research.

Hartlen D.C. and Cronin D.S. (2022), "Arc-Length Re-Parametrization and Signal Registration to Determine a Characteristic Average and Statistical Response Corridors of Biomechanical Data." Frontiers in Bioengineering and Biotechnology 10:843148. doi: 10.3389/fbioe.2022.843148

Bibtex format:

@article{Hartlen_Cronin_2022,
  AUTHOR={Hartlen, Devon C. and Cronin, Duane S.},   
  TITLE={Arc-Length Re-Parametrization and Signal Registration to Determine a Characteristic Average and Statistical Response Corridors of Biomechanical Data},      
  JOURNAL={Frontiers in Bioengineering and Biotechnology},      
  VOLUME={10},      
  YEAR={2022},      
  URL={https://www.frontiersin.org/article/10.3389/fbioe.2022.843148},       
  DOI={10.3389/fbioe.2022.843148},       
  ISSN={2296-4185},   
}

Contributing

If you find discover any bugs or issues, or would like to suggest improvements, please create an issue on this github repostiory. You are invited free to submit pull requests to integrate fixes and features directly into ARCGen, although pull requests will be reviewed before integration.

Anyone is free to fork ARCGen for thier own work, so long as you follow the requirements of the GNU GPL v3 license.

Overview of Operation

For a detailed description of how ARCGen operates, please refer to Hartlen and Cronin (2022). Therefore, only a high-level overview is presented here. In general, the operation of ARCGen can be divided into three stages: arc-length re-parameterization, signal registration, and statistical analysis.

Arc-length Re-parameterization

Arc-length re-parameterization allows ARCGen to handle input signals that are non-monotonic in either measurement axis (a behaviour called hysteresis). Arc-length provides a convenient means to define input points with respect to a strictly monotonic value inherently tied to the shape of the signal.

Before computing the arc-length of each curve, all signals are scaled to eliminate issues of differing magnitude between the axes. Scaling ensures that the shape of the resulting average and corridors are reflective of the inputted signals. All signals are scaled based on the mean extreme values of both measurement axes to eliminate magnitude differences between axes when calculating arc-length. These scaled values are only used for arc-length calculations and are not used later in signal registration or statistical analysis.

Once signals have been scaled, the arc-length of each signal is computed for each point in the signal. The arc-length is then normalized to the total arc-length of each signal, such that all signals have a normalized arc-length of 1.0. Finally, signals are resampled such that all signals have points at the same normalized arc-lengths.

Signal Registration

One of the underlying assumptions of arc-length re-parametrization is that critical features in the signal appear at approximately the same normalized arc-length. However, the resulting characteristic average can be distorted if said features are not perfectly aligned. Additionally, features such as significant variability or noise can dramatically affect the arc-length calculation, changing where critical features occur with respect to normalized arc-length.

Signal registration is applied to help align critical features of signals. This process introduces a warping function for each input signal that subtly alters how each signal is resampled with respect to arc-length to align critical features. These warping functions (strictly monotonic, piecewise Hermite cubic splines) are determined for all signals simultaneously by maximizing cross-correlation between all signals. To ensure that warping functions do not produce highly skewed, unrealistic responses, a penalty function is used to limit the amount of warping introduced.

Signal registration is an optional process and is not needed if input signals are very highly correlated or strictly monotonic. While some experimentation is needed to select the best number of control points, a rule of thumb would be to set the number of interior control points to the number of inflection points expected in the characteristic average.

Statistical Analysis

Following arc-length re-parameterization and registration, all input signals will have the same number of points and have features aligned with respect to a consistent normalized arc-length. Statistical analysis is undertaken in a point-wise fashion at each normalized arc-length. This analysis assumes points are uncorrelated and distributed according to a two-dimensional normal distribution. Based on this assumption, an elliptical confidence region can be constructed at each normalized arc-length. The length of these ellipses' major and minor axes is proportional to the standard deviation at each arc-length.

The characteristic average of the input signals is defined as the mean value at each normalized arc-length. The response corridors are the envelope of all ellipses. As there is no closed-form way of extracting this envelope, a marching-squares algorithm is used to extract this envelope numerically. Because the envelope is extracted numerically, it is important that the number of resampling points (nResamplePoints) is large enough to ensure that ellipses are sufficiently overlapped to provide a smooth, realistic envelope. Similarly, the resolution of the marching squares grid (CorridorRes) should be fine enough to capture the shape of the ellipses correctly. This last feature is similar to ensuring that the mesh of a finite element or computational fluid dynamics simulation is fine enough to resolve features.

Change Log

Version 2024.1.0

Version 2024.1.0 of ARCGen-python sees incremental improvement over previous versions. ARCGen-python 2024.1.0 now performs signal registration with 2 control points by default if nWarpCtrlPts is not otherwise defined. These changes do not change any of the underlying behaviour of ARCGen, but are intended to ensure new users get better results more quickly.

Additionally, the README.md has been updated to increase clarity and get new users up and running more quickly.

  • nWarpCtrlPts default value changed to 2 from 0 (signal registration disabled)

Version 2023.1

Important fix to polygonFunction.polyxpoly() as well as fixes to unit tests.

Version 2022.1

This is the first production release of ARCGen-Python. There will inevitably be bugs. If you discover any throughout the course of your usage of ARCGen-Python, please open an issue ticket.

About

A generalized method for computing an average and statistical response corridors from experimental signals. Now in Python!

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages