Skip to content

Commit

Permalink
New 2D Decoherence Analysis Function
Browse files Browse the repository at this point in the history
  • Loading branch information
HKaras committed Apr 29, 2024
1 parent 0d206e2 commit 4b1c003
Show file tree
Hide file tree
Showing 2 changed files with 119 additions and 4 deletions.
21 changes: 17 additions & 4 deletions autodeer/DEER_analysis.py
Original file line number Diff line number Diff line change
Expand Up @@ -764,11 +764,24 @@ def optimise_pulses(Fieldsweep, pump_pulse, exc_pulse, ref_pulse=None, filter=No
Is the sequence an nDEER sequrence, by default False. If True then the refocusing pulse is not optimised.
num_ref_pulses : int, optional
The total number of refocusing pulses, by default 2
full_output : bool, optional
Return the full output, by default False
Returns
-------
_type_
_description_
ad.Pulse
The optimised pump pulse
ad.Pulse
The optimised excitation pulse
ad.Pulse
The optimised refocusing pulse
str or number
The best filter, only if a list of filters is provided
float
The functional value after optimisation, only if full_output is True
tuple
The grid of the optimisation, only if full_output is True
tuple
The output of the optimisation, only if full_output is True
"""


Expand Down Expand Up @@ -848,7 +861,7 @@ def optimise(filter):
return new_pump_pulse, new_exc_pulse, new_ref_pulse, filter[best]
else:
if full_output:
return new_pump_pulse, new_exc_pulse, new_ref_pulse, funct, grid,Jout
return new_pump_pulse, new_exc_pulse, new_ref_pulse, funct, grid, Jout
else:
return new_pump_pulse, new_exc_pulse, new_ref_pulse,

Expand Down
102 changes: 102 additions & 0 deletions autodeer/Relaxation.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from matplotlib.figure import Figure
import matplotlib.cm as cm
import numpy as np
from deerlab import noiselevel
import matplotlib.pyplot as plt
Expand Down Expand Up @@ -339,3 +340,104 @@ def plot_1Drelax(*args,fig=None, axs=None,cmap=cmap):
axs.set_ylabel('Signal / $ A.U. $')

return fig


class RefocusedEcho2DAnalysis():

def __init__(self, dataset, sequence: Sequence = None) -> None:
"""Analysis and calculation of Refocused Echo 2D data.
Parameters
----------
dataset :
The dataset to be analyzed.
sequence : Sequence, optional
The sequence object describing the experiment. (not currently used)
"""
self.axis = []
if 'tau1' in dataset.coords and 'tau2' in dataset.coords:
self.axis.append(dataset['tau1'])
self.axis.append(dataset['tau2'])
elif 'Xt' in dataset.coords:
self.axis.append(dataset['Xt'])
self.axis.append(dataset['Yt'])

dataset.epr.correctphasefull
self.data = dataset.data
self.dataset = dataset

def plot2D(self, contour=True, norm = 'Normal', axs=None, fig=None):
"""
Create a 2D plot of the 2D relaxation data.
Parameters
----------
contour : bool, optional
Plot the contour of the data, by default True
norm : str, optional
Normalise the data, by default 'Normal'. Options are 'Normal' and 'tau2'. With 'tau2' normalisation, the data is normalised to the maximum of each row.
axs : Axes, optional
The axes to plot to, by default None
fig : Figure, optional
The figure to plot to, by default None
"""

data = self.data.real
if norm == 'Normal':
data = data/np.max(data)
elif norm == 'tau2':
data = data/np.max(data,axis=1)[:,None]

if axs is None and fig is None:
fig, axs = plt.subplots()
elif axs is None:
axs = fig.subplots(1,1)

cmap = cm.get_cmap('Purples',lut=None)
cmap_contour = cm.get_cmap('Greys_r',lut=None)

axs.pcolormesh(self.axis[0],self.axis[1],data,cmap=cmap)
if contour is True:
axs.contour(self.axis[0],self.axis[1],data, cmap=cmap_contour)
axs.set_xlabel(r'$\tau_1$ / $(\mu s)$')
axs.set_ylabel(r'$\tau_2$ / $(\mu s)$')
axs.set_xlim(min(self.axis[0]),max(self.axis[0]))
axs.set_ylim(min(self.axis[1]),max(self.axis[1]))
axs.set_aspect('equal')

return fig

def plot1D(self,axs=None,fig=None):
"""
Create a 1D plot of the 2D relaxation data.
Parameters
----------
axs : Axes, optional
The axes to plot to, by default None
fig : Figure, optional
The figure to plot to, by default None
"""

# TODO: Expand to include optimal data when the 2D data is not symetrical
if axs is None and fig is None:
fig, axs = plt.subplots()
elif axs is None:
axs = fig.subplots(1,1)

data = self.data.real
data /= np.max(data)

optimal_4p = np.argmax(data,axis=1)


axs.plot(self.axis[0],np.diag(data[:,optimal_4p]),label='4 Pulse',color=cmap[0])
axs.plot(self.axis[0]*2,np.diag(data),label='5 pulse',color=cmap[1])
axs.legend()
axs.set_xlabel(r'$\tau_{evo}$ / $(\mu s)$')
axs.set_ylabel('Signal / A.U.')

return fig


0 comments on commit 4b1c003

Please sign in to comment.