Skip to content

CELS: Counterfactual Explanation for Time Series Data via Learned Saliency Maps (2023 Big data)

Notifications You must be signed in to change notification settings

Luckilyeee/CELS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Counterfactual Explanation for Time Series Data via Learned Saliency Maps

This is the repository for our paper titled "CELS: Counterfactual Explanation for Time Series Data via Learned Saliency Maps". This paper has been accepted at the 2023 IEEE International Conference on Big Data (Big Data).

Approach

main

Prerequisites and Instructions

All python packages needed are listed in pip-requirements.txt file and can be installed simply using the pip command.

Get the results for Coffee dataset by running

python3 main.py --pname CELS_Coffee --task_id 0 --run_mode turing --jobs_per_task 10 --samples_per_task 28 --dataset Coffee --algo cf --seed_value 1 --enable_lr_decay False --background_data train --background_data_perc 100 --enable_seed True --max_itr 1000 --run_id 0 --bbm dnn --enable_tvnorm True --enable_budget True --dataset_type test --l_budget_coeff 1 --run 1 --l_tv_norm_coeff 1 --l_max_coeff 1

The results would be saved into the bigdata_cels folder

Data

The data used in this project comes from the UCR archive.

About

CELS: Counterfactual Explanation for Time Series Data via Learned Saliency Maps (2023 Big data)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages