MISP-STIX-converter is a Python library (>=3.9) to handle all the conversions between the MISP standard format and STIX formats.
The package is available as misp-stix in PyPI.
- MISP standard format conversion to STIX 1.x (1.1.1 and 1.2)
- MISP standard format conversion to STIX 2.x (2.0 and 2.1)
- Maps MISP Objects and MISP galaxies with respective semantically similar objects
- STIX to MISP standard format
- Provides an extendable library for mapping and facilitate extension
This library is used by the MISP core software to perform STIX conversion and serving as a useful tool for anyone looking for a clean way of converting between the MISP standard format and various STIX versions (1.1.1, 1.2, 2.0, 2.1).
A complete documentation is available including the mappings between the different formats.
It is strongly recommended to use a virtual environment
If you want to know more about virtual environments, python has you covered
From the current repository:
pip3 install misp-stix
Package details at PyPI: misp-stix
Note: poetry is strongly recommended; e.g., pip3 install poetry
git clone https://github.com/MISP/misp-stix.git && cd misp-stix
git submodule update --init
poetry install
If you already have poetry face any issue with it while installing or updating misp-stix with it, you can try pip3 install -U poetry
to make sure you have a version >= 1.2
Alternatively, you can set up a virtual environment with the following:
virtualenv -p python3 venv
source ./venv/bin/activate
pip install -U pip
# Manual install of setuptools to avoid some dependencies issues
pip install setuptools
pip install .
Tests for MISP format export as STIX 1.1.1 & 1.2:
poetry run pytest tests/test_stix1_export.py
Tests for MISP format export as STIX 2.0:
poetry run pytest tests/test_stix20_export.py
Tests for MISP format export as STIX 2.1:
poetry run pytest tests/test_stix21_export.py
If you are not already within your virtual environment, you can either choose to prefix all the following example commands with poetry run
, or simply activate your python environment:
# If you chose to use the recommended option
poetry shell
# OR
# Another option that should work if you followed the example mentioned above with the install instructions
./venv/bin/activate
At this point, you should be able to use the command-line feature. Here are a few examples:
# Convert an Events collections to STIX 2.1
misp_stix_converter export --version 2.1 -f tests/test_events_collection_1.json
# Convert a MISP Event and set a specific name for the STIX 2.1 output file
misp_stix_converter export --version 2.1 -f tests/test_event.misp.json -o tests/test_event.stix21.json
# Convert a STIX 2 Bundle to MISP, and set specific distributions
misp_stix_converter import -f tmp/test_bundle.stix21.json -o tmp/test_bundle.misp.json -d 1 -cd 1
# This will set the distribution for the Event, Attributes and Galaxy Clusters to `this community`
# Convert multiple STIX 2 Bundles to MISP and directly push the results to MISP, knowing your authentication key
misp_stix_converter import -f tmp/*.stix21.json --url https://localhost --api_key _YOUR_AUTHENTICATION_KEY_
# This will create a MISP Event for each file
For more details on the different options presented with the examples, here is the complete description.
usage: misp_stix_converter [-h] [--debug] {export,import} ...
Convert MISP <-> STIX
options:
-h, --help show this help message and exit
--debug Show errors and warnings
Main feature:
{export,import}
export Export MISP to STIX - try `misp_stix_converter export -h` for more help.
import Import STIX to MISP - try `misp_stix_converter import -h` for more help.
usage: misp_stix_converter export [-h] -f FILE [FILE ...] -v {1.1.1,1.2,2.0,2.1} [-s] [-m] [--output-dir OUTPUT_DIR] [-o OUTPUT_NAME] [--level {attribute,event}] [--format {json,xml}] [-n NAMESPACE] [-org ORG]
options:
-h, --help show this help message and exit
-f, --file FILE [FILE ...]
Path to the file(s) to convert.
-v, --version {1.1.1,1.2,2.0,2.1}
STIX specific version.
-s, --single-output Produce only one result file (in case of multiple input file).
-m, --in-memory Store result in memory (in case of multiple result files) instead of storing it in tmp files.
--output-dir OUTPUT_DIR
Output path - used in the case of multiple input files when the `single_output` argument is not used.
-o, --output-name OUTPUT_NAME
Output file name - used in the case of a single input file or when the `single_output` argument is used.
STIX 1 specific arguments:
--level {attribute,event}
MISP data structure level.
--format {json,xml} STIX 1 format.
-n, --namespace NAMESPACE
Namespace to be used in the STIX 1 header.
-org ORG Organisation name to be used in the STIX 1 header.
usage: misp_stix_converter import [-h] -f FILE [FILE ...] [-v {1,2}] [-s] [-o OUTPUT_NAME] [--output-dir OUTPUT_DIR] [-d {0,1,2,3,4}] [-sg SHARING_GROUP] [--galaxies-as-tags] [--no-force-galaxy-cluster]
[--org-uuid ORG_UUID] [-cd {0,1,2,3,4}] [-csg CLUSTER_SHARING_GROUP] [-t TITLE] [-p PRODUCER] [-c CONFIG] [-u URL] [-a API_KEY] [--skip-ssl]
options:
-h, --help show this help message and exit
-f, --file FILE [FILE ...]
Path to the file(s) to convert.
-v, --version {1,2} STIX major version - default is 2
-s, --single-event Produce only one MISP event per STIX file(in case of multiple Report, Grouping or Incident objects).
-o, --output-name OUTPUT_NAME
Output file name - used in the case of a single input file or when the `single_event` argument is used.
--output-dir OUTPUT_DIR
Output path - used in the case of multiple input files when the `single_event` argument is not used.
-d, --distribution {0,1,2,3,4}
Distribution level for the imported MISP content (default is 0) - 0: Your organisation only - 1: This community only - 2: Connected communities - 3: All communities - 4: Sharing Group
-sg, --sharing-group SHARING_GROUP
Sharing group ID when distribution is 4.
--galaxies-as-tags Import MISP Galaxies as tag names instead of the standard Galaxy format.
--no-force-galaxy-cluster
Do not force the creation of custom Galaxy clusters in some specific cases when STIX objects could be converted either as clusters or MISP objects for instance.
--org-uuid ORG_UUID Organisation UUID to use when creating custom Galaxy clusters.
-cd, --cluster-distribution {0,1,2,3,4}
Galaxy Clusters distribution level in case of External STIX 2 content (default id 0) - 0: Your organisation only - 1: This community only - 2: Connected communities - 3: All communities - 4:
Sharing Group
-csg, --cluster-sharing-group CLUSTER_SHARING_GROUP
Galaxy Clusters sharing group ID in case of External STIX 2 content.
-t, --title TITLE Title used to set the MISP Event `info` field.
-p, --producer PRODUCER
Producer of the imported content - Please make sure you use a name from the list of existing producer Galaxy Clusters.
-c, --config CONFIG Config file containing the URL and the authentication key to connect to your MISP.
-u, --url URL URL to connect to your MISP instance.
-a, --api-key API_KEY
Authentication key to connect to your MISP instance.
--skip-ssl Skip SSL certificate checking when connecting to your MISP instance.
Given a MISP Event (with its metadata fields, attributes, objects, galaxies and tags), declared in an event
variable in Python dict format, you can get the result of a conversion into one of the supported STIX versions:
- Convert a MISP Event in STIX1:
from misp_stix_converter import MISPtoSTIX1EventsParser
parser = MISPtoSTIX1EventsParser(
'MISP-Project', # Example of Org name
'1.1.1' # STIX1 version (1.1.1 or 1.2)
)
parser.parse_misp_event(event)
stix_package = parser.stix_package
- Convert a MISP Event in STIX1 using directly its file name:
from misp_stix_converter import misp_to_stix1
response = misp_to_stix1(
filename, # file name of the file containing a MISP Event
'xml', # return format (XML or JSON)
'1.1.1' # STIX1 version (1.1.1 or 1.2)
)
# if everything went well, response is a dictionary where `success` = 1
The resulting STIX1 Package is then available in a filename.out
file
- Convert a MISP Event in STIX2:
# for STIX 2.0
from misp_stix_converter import MISPtoSTIX20Parser
# for STIX 2.1
from misp_stix_converter import MISPtoSTIX21Parser
parser20 = MISPtoSTIX20Parser()
parser20.parse_misp_event(event)
parser21 = MISPtoSTIX21Parser()
parser21.parse_misp_event(event)
# To get the list of parsed STIX objects
stix_20_objects = parser20.stix_objects
stix_21_objects = parser21.stix_objects
# To get the list of parser STIX objects within a STIX 2.0 or 2.1 Bundle
bundle20 = parser20.bundle
bundle21 = parser21.bundle
- Convert a MISP Event in STIX2 using directly its file name:
from misp_stix_converter import misp_to_stix2
response_20 = misp_to_stix2(filename, version='2.0')
response_21 = misp_to_stix2(filename, version='2.1')
# Again response_20 & response_21 have a `success` field equal to 1 if everything went well
The resulting STIX2 Bundle is the available in a filename.out
file, or you can define the output name with the output_name
argument.
If you get some MISP collection of data, it is also possible to convert it straight into some STIX format:
from misp_stix_converter import MISPtoSTIX1EventsParser, MISPtoSTIX20Parser, MISPtoSTIX21Parser
filename = _PATH_TO_YOUR_FILE_CONTAINING_MISP_FORMAT_
parser1 = MISPtoSTIX1EventsParser('MISP', '1.1.1')
parser1.parse_json_content(filename)
stix_package = parser1.stix_package
parser20 = MISPtoSTIX20Parser()
parser20.parse_json_content(filename)
stix_20_objects = parser20.stix_objects
bundle20 = parser20.bundle
parser21 = MISPtoSTIX21Parser()
parser21.parse_json_content(filename)
stix_21_objects = parser21.stix_objects
bundle21 = parser21.bundle
But in order to parse multiple data collections, you can also use the following helpers:
from misp_stix_converter import misp_event_collection_to_stix1, misp_event_collection_to_stix2
input_filenames = [filename for filename in Path(_PATH_TO_YOUR_MISP_FILES_).glob('*.json')]
stix1_response = misp_event_collection_to_stix1(
*input_filenames,
output_name=output_filename, # path to the file where the results are going to be written
return_format='xml', # STIX1 return format (XML or JSON)
version='1.1.1' # STIX1 version (1.1.1 or 1.2)
)
stix20_response = misp_event_collection_to_stix2(
*input_filenames,
version='2.0' # STIX 2 version
)
stix21_response = misp_event_collection_to_stix2_1(
*input_filenames,
version='2.1',
single_output=True, # For a single resulting file
output_name=output_file_name, # path to the file where the results are going to be written
in_memory=True # To keep results in memory before writing the full converted content at the end in the result file
)
Again, all the responses should have a success
field equal to 1 and the resulting STIX1 Package and STIX 2.0 & 2.1 Bundles are available in the specific output file names.
Various examples are provided and used by the different tests scripts in the tests directory. Those example files are showing the results of MISP format exported in the various supported STIX formats.
A specific documentation concerning the mapping between MISP and the various supported STIX versions is also provided in the documentation directory. You can find there all the different cases illustrated with examples.
misp-stix is released under a BSD 2-Clause "Simplified" License allow easy reuse with other libraries.
Copyright 2019-2025 Christian Studer
Copyright 2019-2025 CIRCL - Computer Incident Response Center Luxembourg c/o "security made in Lëtzebuerg" (SMILE) g.i.e.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.