Skip to content

Разработка сверточной нейронной сети для классификации изображений

Notifications You must be signed in to change notification settings

MTUCI-Labs/Lab5-Classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lab5-Classification

Разработка сверточной нейронной сети для классификации изображений

Ответы на Вопросы

1. Как работает свертка (1d, 2d, 3d)?

  • Свертка - это математическая операция, которая является основой сверточных нейронных сетей (CNN). Она используется для обработки данных с сетчатой структурой. В контексте машинного обучения свертка часто применяется к изображениям (2D), аудио (1D) и видео (3D).

    1. 1D свертка: Используется в обработке аудио и временных рядов. В 1D свертке используется одномерное ядро (или фильтр), которое скользит по одномерному входному массиву (например, временной ряд). На каждом шаге производится поэлементное умножение значений ядра и соответствующих значений входного массива, а затем результаты суммируются. Это дает одно выходное значение. Процесс повторяется для каждого возможного положения ядра на входном массиве.

    2. 2D свертка: Часто используется в обработке изображений. Здесь используется двумерное ядро, которое скользит по двумерному входному массиву (например, изображение). На каждом шаге производится поэлементное умножение значений ядра и соответствующих значений входного массива, а затем результаты суммируются. Это дает одно выходное значение. Процесс повторяется для каждого возможного положения ядра на входном массиве.

    3. 3D свертка: Используется в обработке видео и медицинских изображений. Здесь используется трехмерное ядро, которое скользит по трехмерному входному массиву (например, видео, которое можно представить как последовательность изображений). На каждом шаге производится поэлементное умножение значений ядра и соответствующих значений входного массива, а затем результаты суммируются. Это дает одно выходное значение. Процесс повторяется для каждого возможного положения ядра на входном массиве.

Свертка позволяет модели обучаться на локальных паттернах в данных, что делает сверточные нейронные сети очень эффективными для задач, связанных с изображениями, аудио и видео.

2. Что такое Пуллинг?

  • Пуллинг (Pooling) - это операция, часто используемая в сверточных нейронных сетях (CNN) после операции свертки. Основная цель пуллинга - уменьшить пространственные размерности входного массива (изображения), сохраняя при этом наиболее важные информационные характеристики.

Пуллинг работает, применяя некоторую функцию агрегации (например, максимум или среднее) к подмножествам входного массива. Например, при максимальном пуллинге (Max Pooling) берется подмножество входного массива и возвращается максимальное значение из этого подмножества. Это делается для каждого подмножества входного массива, что приводит к уменьшению его размерности.

Пуллинг помогает сделать модель более устойчивой к небольшим изменениям в входных данных, а также уменьшает вычислительную сложность модели, уменьшая количество параметров.

3. Что такое dropout?

  • Dropout - это техника регуляризации, используемая в нейронных сетях для предотвращения переобучения. Переобучение - это ситуация, когда модель слишком хорошо обучается на тренировочных данных и начинает плохо работать на новых, неизвестных данных.

Во время обучения, когда применяется dropout, случайным образом выбираются некоторые нейроны и "отключаются", то есть их вклад в активацию следующего слоя и обратное распространение ошибки временно прекращается. Это делается на каждом шаге обучения, и на каждом шаге выбираются разные нейроны.

Процент отключаемых нейронов обычно задается вручную и является гиперпараметром. Обычно это значение составляет от 20% до 50%.

Dropout помогает модели не полагаться слишком сильно на любой один нейрон, тем самым увеличивая ее устойчивость и способность обобщения на новые данные. Это также может быть интерпретировано как тренировка ансамбля нейронных сетей в одной модели, поскольку на каждом шаге обучения "включается" разная подсеть.

About

Разработка сверточной нейронной сети для классификации изображений

Topics

Resources

Stars

Watchers

Forks