Skip to content

Commit

Permalink
v 0.2.0 support tflite and serving
Browse files Browse the repository at this point in the history
  • Loading branch information
MahmoudWahdan committed Oct 31, 2020
1 parent ff95cce commit 676c690
Show file tree
Hide file tree
Showing 15 changed files with 314 additions and 42 deletions.
8 changes: 5 additions & 3 deletions examples/convert_to_tflite.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,10 +6,12 @@
from dialognlu import TransformerNLU
from dialognlu.utils.tf_utils import convert_to_tflite_model

model_path = "../saved_models/joint_distilbert_model"
# model_path = "../saved_models/joint_distilbert_model"
model_path = "../saved_models/joint_trans_bert_model"

print("Loading model ...")
nlu = TransformerNLU.load(model_path)

save_file_path = "../saved_models/joint_distilbert_model/model.tflite"
convert_to_tflite_model(nlu.model.model, save_file_path, conversion_mode="fp16_quantization")
save_file_path = model_path + "/model.tflite"
convert_to_tflite_model(nlu.model.model, save_file_path, conversion_mode="hybrid_quantization")
print("Done")
41 changes: 41 additions & 0 deletions examples/evaluate_tflite_transformer_nlu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
# -*- coding: utf-8 -*-
"""
@author: mwahdan
"""

# diasable the GPU
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"


from dialognlu import TransformerNLU
from dialognlu.readers.goo_format_reader import Reader
import time


num_process = 2


model_path = "../saved_models/joint_distilbert_model"
# model_path = "../saved_models/joint_trans_bert_model"
# model_path = "../saved_models/joint_trans_albert_model"
# model_path = "../saved_models/joint_trans_roberta_model"

print("Loading model ...")
nlu = TransformerNLU.load(model_path, quantized=True, num_process=num_process)

print("Loading dataset ...")
test_path = "../data/snips/test"
test_dataset = Reader.read(test_path)

print("Evaluating model ...")
t1 = time.time()
token_f1_score, tag_f1_score, report, acc = nlu.evaluate(test_dataset)
t2 = time.time()

print('Slot Classification Report:', report)
print('Slot token f1_score = %f' % token_f1_score)
print('Slot tag f1_score = %f' % tag_f1_score)
print('Intent accuracy = %f' % acc)

print("Using %d processes took %f seconds" % (num_process, t2 - t1))
26 changes: 26 additions & 0 deletions examples/predict_tflite_nlu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# -*- coding: utf-8 -*-
"""
@author: mwahdan
"""

# diasable the GPU
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"


from dialognlu import TransformerNLU


# model_path = "../saved_models/joint_distilbert_model"
# model_path = "../saved_models/joint_trans_bert_model"
# model_path = "../saved_models/joint_trans_albert_model"
model_path = "../saved_models/joint_trans_roberta_model"

print("Loading model ...")
nlu = TransformerNLU.load(model_path, quantized=True, num_process=1)

print("Prediction ...")
utterance = "add sabrina salerno to the grime instrumentals playlist"
print ("utterance: {}".format(utterance))
result = nlu.predict(utterance)
print ("result: {}".format(result))
6 changes: 4 additions & 2 deletions examples/train_transformer_nlu.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
pretrained_model_name_or_path = "distilbert-base-uncased"
save_path = "../saved_models/joint_distilbert_model"

epochs = 1 #3
epochs = 3
batch_size = 64


Expand All @@ -40,12 +40,14 @@
"num_bert_fine_tune_layers": 10,
"intent_loss_weight": 1.0,#0.2,
"slots_loss_weight": 3.0,#2.0,

"max_length": 64, # You can set max_length (recommended) or leave it and it will be computed automatically based on longest training example
}


nlu = TransformerNLU.from_config(config)
nlu.train(train_dataset, val_dataset, epochs, batch_size)

print("Saving ...")
nlu.save(save_path)
nlu.save(save_path, save_tflite=True, conversion_mode="hybrid_quantization")
print("Done")
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@

setup(
name="dialognlu",
version="0.1.0",
version="0.2.0",
author="Mahmoud Wahdan",
author_email="mahmoud.a.wahdan@gmail.com",
description="State-of-the-art Dialog NLU (Natural Language Understanding) Library with TensorFlow 2.x and keras",
Expand Down
2 changes: 1 addition & 1 deletion src/dialognlu/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@

__version__ = "0.1.0"
__version__ = "0.2.0"

from .nlu_components import TransformerNLU, BertNLU
from .auto_nlu import AutoNLU
64 changes: 63 additions & 1 deletion src/dialognlu/models/base_joint_trans.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ def __init__(self, config, trans_model=None, is_load=False):
self.num_bert_fine_tune_layers = config.get('num_bert_fine_tune_layers', 10)
self.intent_loss_weight = config.get('intent_loss_weight', 1.0)
self.slots_loss_weight = config.get('slots_loss_weight', 3.0)
self.max_length = config.get('max_length')

self.model_params = config

Expand Down Expand Up @@ -115,4 +116,65 @@ def load_model_by_class(klazz, load_folder_path, trans_model_name):
new_model = klazz(model_params, trans_model=None, is_load=True)
new_model.model = tf.keras.models.load_model(os.path.join(load_folder_path, trans_model_name))
new_model.compile_model()
return new_model
return new_model


class TfliteBaseJointTransformerModel:

def __init__(self, config):
self.config = config
self.slots_num = config['slots_num']
self.interpreter = None

def predict_slots_intent(self, x, slots_vectorizer, intent_vectorizer, remove_start_end=True,
include_intent_prob=False):
# x = {k:v[0] for k,v in x.items()}
valid_positions = x["valid_positions"]
x["valid_positions"] = self.prepare_valid_positions(valid_positions)
y_slots, y_intent = self.predict(x)
slots = slots_vectorizer.inverse_transform(y_slots, valid_positions)
if remove_start_end:
slots = [x[1:-1] for x in slots]

if not include_intent_prob:
intents = np.array([intent_vectorizer.inverse_transform([np.argmax(i)])[0] for i in y_intent])
else:
intents = np.array([(intent_vectorizer.inverse_transform([np.argmax(i)])[0], round(float(np.max(i)), 4)) for i in y_intent])
return slots[0], intents[0]

def prepare_valid_positions(self, in_valid_positions):
in_valid_positions = np.expand_dims(in_valid_positions, axis=2)
in_valid_positions = np.tile(in_valid_positions, (1, 1, self.slots_num))
return in_valid_positions

def predict(self, inputs):
raise NotImplementedError()

@staticmethod
def load_model_by_class(clazz, path):
with open(os.path.join(path, 'params.json'), 'r') as json_file:
model_params = json.load(json_file)

new_model = clazz(model_params)
quant_model_file = os.path.join(path, 'model.tflite')
new_model.interpreter = tf.lite.Interpreter(model_path=str(quant_model_file), num_threads=1)
new_model.interpreter.allocate_tensors()
return new_model


class TfliteBaseJointTransformer4inputsModel(TfliteBaseJointTransformerModel):

def __init__(self, config):
super(TfliteBaseJointTransformer4inputsModel, self).__init__(config)

def predict(self, inputs):
self.interpreter.set_tensor(self.interpreter.get_input_details()[0]["index"], inputs.get("input_word_ids").astype(np.int32))
self.interpreter.set_tensor(self.interpreter.get_input_details()[1]["index"], inputs.get("input_mask").astype(np.int32))
self.interpreter.set_tensor(self.interpreter.get_input_details()[2]["index"], inputs.get("input_type_ids").astype(np.int32))
self.interpreter.set_tensor(self.interpreter.get_input_details()[3]["index"], inputs.get("valid_positions").astype(np.float32))
output_index_0 = self.interpreter.get_output_details()[0]["index"]
output_index_1 = self.interpreter.get_output_details()[1]["index"]
self.interpreter.invoke()
intent = self.interpreter.get_tensor(output_index_0)
slots = self.interpreter.get_tensor(output_index_1)
return slots, intent
21 changes: 16 additions & 5 deletions src/dialognlu/models/joint_trans_albert.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, Multiply, TimeDistributed
from .base_joint_trans import BaseJointTransformerModel
from .base_joint_trans import BaseJointTransformerModel, TfliteBaseJointTransformerModel, TfliteBaseJointTransformer4inputsModel


class JointTransAlbertModel(BaseJointTransformerModel):
Expand All @@ -16,10 +16,10 @@ def __init__(self, config, trans_model=None, is_load=False):


def build_model(self):
in_id = Input(shape=(None,), name='input_word_ids', dtype=tf.int32)
in_mask = Input(shape=(None,), name='input_mask', dtype=tf.int32)
in_segment = Input(shape=(None,), name='input_type_ids', dtype=tf.int32)
in_valid_positions = Input(shape=(None, self.slots_num), name='valid_positions')
in_id = Input(shape=(self.max_length), name='input_word_ids', dtype=tf.int32)
in_mask = Input(shape=(self.max_length), name='input_mask', dtype=tf.int32)
in_segment = Input(shape=(self.max_length), name='input_type_ids', dtype=tf.int32)
in_valid_positions = Input(shape=(self.max_length, self.slots_num), name='valid_positions')
bert_inputs = [in_id, in_mask, in_segment]
inputs = bert_inputs + [in_valid_positions]

Expand All @@ -41,3 +41,14 @@ def save(self, model_path):
@staticmethod
def load(load_folder_path):
return BaseJointTransformerModel.load_model_by_class(JointTransAlbertModel, load_folder_path, 'joint_albert_model.h5')



class TfliteJointTransAlbertModel(TfliteBaseJointTransformer4inputsModel):

def __init__(self, config):
super(TfliteJointTransAlbertModel, self).__init__(config)

@staticmethod
def load(path):
return TfliteBaseJointTransformerModel.load_model_by_class(TfliteJointTransAlbertModel, path)
22 changes: 17 additions & 5 deletions src/dialognlu/models/joint_trans_bert.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,8 @@
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, Multiply, TimeDistributed
from .base_joint_trans import BaseJointTransformerModel
from .base_joint_trans import BaseJointTransformerModel, TfliteBaseJointTransformerModel, TfliteBaseJointTransformer4inputsModel
import numpy as np


class JointTransBertModel(BaseJointTransformerModel):
Expand All @@ -16,10 +17,10 @@ def __init__(self, config, trans_model=None, is_load=False):


def build_model(self):
in_id = Input(shape=(None,), name='input_word_ids', dtype=tf.int32)
in_mask = Input(shape=(None,), name='input_mask', dtype=tf.int32)
in_segment = Input(shape=(None,), name='input_type_ids', dtype=tf.int32)
in_valid_positions = Input(shape=(None, self.slots_num), name='valid_positions')
in_id = Input(shape=(self.max_length), name='input_word_ids', dtype=tf.int32)
in_mask = Input(shape=(self.max_length), name='input_mask', dtype=tf.int32)
in_segment = Input(shape=(self.max_length), name='input_type_ids', dtype=tf.int32)
in_valid_positions = Input(shape=(self.max_length, self.slots_num), name='valid_positions')
bert_inputs = [in_id, in_mask, in_segment]
inputs = bert_inputs + [in_valid_positions]

Expand All @@ -41,3 +42,14 @@ def save(self, model_path):
@staticmethod
def load(load_folder_path):
return BaseJointTransformerModel.load_model_by_class(JointTransBertModel, load_folder_path, 'joint_bert_model.h5')



class TfliteJointTransBertModel(TfliteBaseJointTransformer4inputsModel):

def __init__(self, config):
super(TfliteJointTransBertModel, self).__init__(config)

@staticmethod
def load(path):
return TfliteBaseJointTransformerModel.load_model_by_class(TfliteJointTransBertModel, path)
32 changes: 27 additions & 5 deletions src/dialognlu/models/joint_trans_distilbert.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
@author: mwahdan
"""

from .base_joint_trans import BaseJointTransformerModel
from .base_joint_trans import BaseJointTransformerModel, TfliteBaseJointTransformerModel
from .callbacks import F1Metrics
import tensorflow as tf
from tensorflow.keras.models import Model
Expand All @@ -18,9 +18,9 @@ def __init__(self, config, trans_model=None, is_load=False):


def build_model(self):
in_id = Input(shape=(None,), name='input_word_ids', dtype=tf.int32)
in_mask = Input(shape=(None,), name='input_mask', dtype=tf.int32)
in_valid_positions = Input(shape=(None, self.slots_num), name='valid_positions')
in_id = Input(shape=(self.max_length), name='input_word_ids', dtype=tf.int32)
in_mask = Input(shape=(self.max_length), name='input_mask', dtype=tf.int32)
in_valid_positions = Input(shape=(self.max_length, self.slots_num), name='valid_positions')
bert_inputs = [in_id, in_mask]
inputs = bert_inputs + [in_valid_positions]

Expand Down Expand Up @@ -78,4 +78,26 @@ def save(self, model_path):

@staticmethod
def load(load_folder_path):
return BaseJointTransformerModel.load_model_by_class(JointTransDistilBertModel, load_folder_path, 'joint_distilbert_model.h5')
return BaseJointTransformerModel.load_model_by_class(JointTransDistilBertModel, load_folder_path, 'joint_distilbert_model.h5')



class TfliteJointTransDistilBertModel(TfliteBaseJointTransformerModel):

def __init__(self, config):
super(TfliteJointTransDistilBertModel, self).__init__(config)

def predict(self, inputs):
self.interpreter.set_tensor(self.interpreter.get_input_details()[0]["index"], inputs.get("input_word_ids").astype(np.int32))
self.interpreter.set_tensor(self.interpreter.get_input_details()[1]["index"], inputs.get("input_mask").astype(np.int32))
self.interpreter.set_tensor(self.interpreter.get_input_details()[2]["index"], inputs.get("valid_positions").astype(np.float32))
output_index_0 = self.interpreter.get_output_details()[0]["index"]
output_index_1 = self.interpreter.get_output_details()[1]["index"]
self.interpreter.invoke()
intent = self.interpreter.get_tensor(output_index_0)
slots = self.interpreter.get_tensor(output_index_1)
return slots, intent

@staticmethod
def load(path):
return TfliteBaseJointTransformerModel.load_model_by_class(TfliteJointTransDistilBertModel, path)
25 changes: 19 additions & 6 deletions src/dialognlu/models/joint_trans_roberta.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,13 @@
@author: mwahdan
"""

from .base_joint_trans import BaseJointTransformerModel
import tensorflow as tf
from tensorflow.keras.layers import Dense, Input, Multiply, TimeDistributed
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, Multiply, TimeDistributed

from .base_joint_trans import (BaseJointTransformerModel,
TfliteBaseJointTransformer4inputsModel,
TfliteBaseJointTransformerModel)


class JointTransRobertaModel(BaseJointTransformerModel):
Expand All @@ -16,10 +19,10 @@ def __init__(self, config, trans_model=None, is_load=False):


def build_model(self):
in_id = Input(shape=(None,), name='input_word_ids', dtype=tf.int32)
in_mask = Input(shape=(None,), name='input_mask', dtype=tf.int32)
in_segment = Input(shape=(None,), name='input_type_ids', dtype=tf.int32)
in_valid_positions = Input(shape=(None, self.slots_num), name='valid_positions')
in_id = Input(shape=(self.max_length), name='input_word_ids', dtype=tf.int32)
in_mask = Input(shape=(self.max_length), name='input_mask', dtype=tf.int32)
in_segment = Input(shape=(self.max_length), name='input_type_ids', dtype=tf.int32)
in_valid_positions = Input(shape=(self.max_length, self.slots_num), name='valid_positions')
bert_inputs = [in_id, in_mask, in_segment]
inputs = bert_inputs + [in_valid_positions]

Expand All @@ -41,3 +44,13 @@ def save(self, model_path):
@staticmethod
def load(load_folder_path):
return BaseJointTransformerModel.load_model_by_class(JointTransRobertaModel, load_folder_path, 'joint_roberta_model.h5')


class TfliteJointTransRobertaModel(TfliteBaseJointTransformer4inputsModel):

def __init__(self, config):
super(TfliteJointTransRobertaModel, self).__init__(config)

@staticmethod
def load(path):
return TfliteBaseJointTransformerModel.load_model_by_class(TfliteJointTransRobertaModel, path)
Loading

0 comments on commit 676c690

Please sign in to comment.