Skip to content

Leong, Z. X., & Zhu, T. (2021). Direct velocity inversion of ground penetrating radar data using gprnet. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2020JB021047

Notifications You must be signed in to change notification settings

MohKarimi1987/GPRNet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GPRNet - GPR Inversion Using Deep Learning

Update 1/1/2022: This repo is now updated to reflect the figures and results that are produced in the paper. If you downloaded the files before 1/1/2022, please re-download again.

Note: This repository contains only codes. To reproduce the figures at a local machine, please download all data sets here: https://bit.ly/36hDrRj (The password is a u t o m a t e G P R , without spaces)

Key Points from paper:

  • We propose a deep learning-based EM velocity inversion for GPR zero-offset data
  • Tests on synthetic examples show accurate velocity inversion results
  • Applications to field data yield predictions that agree with the velocity models derived from previous physics-based inversion studies

GPRNet Architecture comment:

GPRNet architecture is found at DLcodes/GPRNet.py

  • Essentially, it's an encoder-decoder based Convolutional Neural Network (CNN).
  • The framework is designed based on the on DeepLabV3 architecture(https://arxiv.org/abs/1706.05587)

Synthetic EM Velocity Inversion

1D Scenario:-
  1. Run 1-Generate_1D_models.py

    • Generates 10,000 random velocity profiles
    • Creates these files:
      • Synthetic/Data/1D/ep.mat (dielectric permittivity for FDTD simulation to obtain GPR data)
      • Synthetic/Data/1D/veltd.npy (raw velocity files)
  2. Run 2-FD_GPR_sim.m

    • Perform FDTD on ep.mat to create raw 1D GPR gathers
    • Creates Synthetic/Data/1D/fdrawgather.mat
  3. Run 3-Process_1D_GPRtraces.py

    • Removes first arrivals and remove any data pair that has NaN values
    • Creates these files:
      • Synthetic/Data/1D/xTrain_gathers.npy
      • Synthetic/Data/1D/yTrain_vels.npy
  4. Run 4-Data_Loader.py

    • Split data into training, testing, and validation
    • Creates these files:
      • Synthetic/Data/1D/ForDL/Synthetic_Xtrain_1d.npy
      • Synthetic/Data/1D/ForDL/Synthetic_ytrain_1d.npy
      • Synthetic/Data/1D/ForDL/Synthetic_yvalid_1d.npy
      • Synthetic/Data/1D/ForDL/Synthetic_xvalid_1d.npy
      • Synthetic/Data/1D/ForDL/Synthetic_Xtest_1d.npy
      • Synthetic/Data/1D/ForDL/Synthetic_yTrue_1d.npy
  5. Run 5-Synthetic_1D_DL_Training.py

    • Trains GPR-Velocity
    • Creates these files:
      • Synthetic/Weights/weight_GPRNet_n16k20.h5
      • Synthetic/Weights/weight_GPRNet_n16k20.csv
  6. Run 6-Synthetic_1D_DL_Prediction.py

    • Applies trained weights to testing data set
    • Creates these files:
      • Synthetic/Data/1D/ForDL/Synthetic_ypred_1D.npy
  7. Run 7-Synthetic_1D.ipynb (jupyter notebook)

    • Reproduces Figure 3 and Figure 4
2D Scenario :-
  1. Run 8-Process_2D_models.py

    • Synthetic/Data/2D/yTrue2D_vel_dd.npy is the given 2D velocity model (in m)
    • This script converts the velocity model into time depth domain and to dielectric permittivity to be used for 2D common-offset GPR FDTD simulation
    • Creates these files:
      • Synthetic/Data/2D/yTrue2D_ep.mat; (for FDTD simulation)
      • Synthetic/Data/2D/yTrue2D_vel_td.npy; (for ground truthing predicted velocity model)
  2. Run 9-FD_sim_2Dtestingmodel.m

    • Simulates GPR data (common-offset)
    • Creates Synthetic/Data/2D/fdraw_2D.mat
  3. Run 10-Synthetic_2D.ipynb (jupyter notebook) - Part 1

    • Processes and predicts velocity model from fdraw_2D.mat
    • Creates these files:
      • Synthetic/Data/2D/ypred2D.npy
      • Synthetic/Data/2D/ep_ypred2D.mat (used for forward data to see data matching)
  4. Run 11-FD_sim_testingmodel_ypred.m

    • Creates forward data from prediction (ypred2D.npy)
    • Creates Synthetic/Data/2D/fdraw_predicted_data.mat
  5. Run 12-Synthetic_2D.ipynb (jupyter notebook) - Part2

    • Reproduces Figure 5 and 6

Field Application

  1. Run 13-generate_vel.py

    • Creates these files:
      • Field/Data/ep.mat
      • Field/Data/veltd_raw.mat
  2. Run 14-GPR_sim.m

    • Simulates 50,000 GPR traces (this is a large job, might want to split this into a few parts)
    • Creates these files:
      • Field/Data/fdrawgathers.mat (intermediate files, skipping upload)
  3. Run 15-process_GPR_Vel_part1.m

    • Preprocess GPR data and Velocity
    • Creates these files: (intermediate files, skipping upload)
      • Field/Data/AllRawGathers.mat
      • Field/Data/veltd_raw_corr.mat
  4. Run 16-process_GPR_Vel_part2.py

    • Create data and velocity for GPRNet training
    • Augmentation of data set takes place here
    • Creates these files: (intermediate files, skipping upload)
      • Field/Data/ForDL/GPRData.npy
      • Field/Data/ForDL/Vel.npy
  5. Run 17-field_Data_Loader.py

    • Splits data set into training, testing and validation
    • Creates these files:
      • Field/Data/ForDL/field_X_train.npy
      • Field/Data/ForDL/field_X_valid.npy
      • Field/Data/ForDL/field_X_test.npy
      • Field/Data/ForDL/field_y_train.npy
      • Field/Data/ForDL/field_y_valid.npy
      • Field/Data/ForDL/field_y_true.npy
  6. Run 18-Field_DL_Training.py

    • Trains GPR data and Velocity
    • Creates these files:
      • Field/Weights/weight_GPRNet_n32k10.h5
      • Field/Weights/weight_GPRNet_n32k10.csv
  7. Run 19-extract_codata.m

    • Reads wurtsmith_line1.sgy field data and extracts common-offset data
    • Creates Field/Data/rawfielddata/codata.mat
  8. Run 20-Field_Application.ipynb (jupyter notebook)

    • Reproduces Figure 7, 8, 9, 10
    • Applies trained weights to common-offset data to obtain field prediction
    • Follow instructions inside notebook to simulate forward data based on field prediction
    • Creates these files:
      • Field/Data/pcsfielddata/ProcessedFieldData_rev.npy
      • Field/Data/prediction/FieldPrediction_rev.npy
      • Field/Data/prediction/ep_FieldPrediction_rev.mat
      • Field/Data/prediction/rawgather_Stacked1D_fieldprediction_rev.mat (this is created in 20a-FD_pred.m)
      • Field/Data/prediction/ForwDataFrPred_rev.npy

About

Leong, Z. X., & Zhu, T. (2021). Direct velocity inversion of ground penetrating radar data using gprnet. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2020JB021047

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.2%
  • Other 1.8%