Skip to content

Natyman48/amharic-llama-llava

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

amharic-llama-llava

Pretraining, finetuning, and inference for Amharic LLaMA and LLaVA adapted from:

https://github.com/ymcui/Chinese-LLaMA-Alpaca

https://github.com/facebookresearch/llama-recipes

https://github.com/haotian-liu/LLaVA

Llama-2-Amharic weights: https://huggingface.co/iocuydi/llama-2-amharic-3784m Can be run with the inference script in this repo. Pretrained on 3.784b Amharic tokens.

Amharic LLaVA weights: https://huggingface.co/iocuydi/amharic-llava Can be run with the inference script in this repo. Must run with the PRETRAINED amharic llama, not finetuned. See llava eval section for more details.

Amharic LLaVA requires this CLIP model: https://huggingface.co/openai/clip-vit-large-patch14-336

Associated datasets:

Amharic Blip Laion: https://huggingface.co/datasets/iocuydi/amharic-blip-laion

Amharic Dolly: https://huggingface.co/datasets/iocuydi/amharic-dolly-15k

Amharic Alpaca: https://huggingface.co/datasets/iocuydi/amharic-alpaca

Amharic Visual Instruction Tuning: https://huggingface.co/datasets/iocuydi/amharic-visual-instruction-tuning

Amharic RedPajama Synthetic (pretraining, partial): https://huggingface.co/datasets/iocuydi/amharic-redpajama-synthetic

Amharic OASST1 Pruned: https://huggingface.co/datasets/iocuydi/amharic-OASST1-pruned

More info https://arxiv.org/abs/2403.06354 https://medium.com/@garrilogistics/llama-2-amharic-llms-for-low-resource-languages-d6fb0ba332f4

Cite:

@misc{andersland2024amharic,
      title={Amharic LLaMA and LLaVA: Multimodal LLMs for Low Resource Languages}, 
      author={Michael Andersland},
      year={2024},
      eprint={2403.06354},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 91.9%
  • Shell 5.0%
  • JavaScript 1.6%
  • HTML 1.2%
  • CSS 0.3%