Skip to content

Latest commit

 

History

History
171 lines (122 loc) · 2.61 KB

README.md

File metadata and controls

171 lines (122 loc) · 2.61 KB

MatLibCPP (A simple matrix library)

A MATRIX library for C++ users

Features

Following are the features of MatLibCpp

Matrix Initialization

  • matrix <typename> a(row_size,column_size, const initial_value)

    Eg:

      matrix <int> a(2,2,4);
    
      Matrix a will be:
      4 4 
      4 4
    
  • matrix <typename> a(row_size,column_size)

    Eg:

      matrix <int> a(2,2);
      
      Matrix a will be:
      0 0
      0 0
    
  • matrix <typename> a;

    Eg:

      matrix <int> a;
    
  • matrix <typename> a(const std :: vector < std :: vector <typename> > &)

    Eg:

      vector <vector <int> > b={{1,2},{2,3}}
      matrix <int> a = b;
    
      Matrix a will be:
      1 2
      2 3
    
  • matrix <typename> a(const std :: initializer_list < std :: initializer_list <typename> > &)

    Eg:

      matrix <int> a = {{1,2},{2,3}};
    
      Matrix a will be:
      1 2
      2 3
    

Accessing the element of ith row and jth column:

  • a(i,j) will give the required element

Matrix Addition

  • matrix <typename> :: matrix <typename> operator + or += (matrix <typename> & val)

    Eg:

      matrix <int> a(2, 2, 5),b(2, 2, 5);
      a+=b;
      auto c=a+b;
      
      Matrix a and c will become:
      10 10
      10 10
    

Matrix Subtraction

  • matrix <typename> :: matrix <typename> operator - or -= (matrix <typename> & val)

    Eg:

      matrix <int> a(2, 2, 5),b(2, 2, 4);
      a+=b;
      auto c=a+b;
      
      Matrix a and c will become:
      1 1
      1 1
    

Matrix Multiplication

  • matrix <typename> :: matrix <typename> operator * or *= (matrix <typename> & val)

    Eg:

      matrix <int> a(2, 2, 1),b(2, 2, 2);
      a*=b;
      auto c=a*b;
      
      Matrix a and c will become:
      4 4
      4 4
    

Matrix Multiplication with scalar

  • matrix <typename> :: void operator * or *= (const typename& val)

    Eg:

      matrix <int> a(2, 2, 1);
      a*=4.0;
      auto c=a*4.0;
      
      Matrix a is:
      4 4
      4 4
      
      Matric c:
      4.0 4.0
      4.0 4.0
    

Matrix Division with scalar

  • matrix <typename> :: void operator / or /= (const typename& val)

    Eg:

      matrix <int> a(2, 2, 1);
      a/=2.0;
      auto c=a/2.0;
      
      Matrix a is:
      0 0
      0 0
      
      Matric c is:
      0.5 0.5
      0.5 0.5
    

Matrix Mudulo with scalar

  • matrix <typename> :: void operator % or %= (const typename& val)

    Eg:

      matrix <int> a(2, 2, 10);
      a%=4;
      auto c=a%4;
      
      Matrix a and c will be:
      2 2
      2 2
    

Matrix Exponentiation With or With Modulo

  • matrix <typename> :: matrix <typename> exp(exponent, MOD=-1)

    Eg:

      matrix <int> a(2,2,2);
      auto c = a.exp(2);
      
      Matrix c is:
      8 8
      8 8
      auto c = a.exp(2,3);
      
      Matrix c is:
      3 3
      3 3
    

To Do's

  • Matrix transpose
  • Matrix inverse
  • Currently thinking of more