-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
39b898b
commit b17ebf5
Showing
5 changed files
with
7,777 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,215 @@ | ||
using Pumas, CSV, CairoMakie, PumasUtilities | ||
|
||
# Current working directory | ||
pwd() | ||
|
||
df = CSV.read("tgd-os/tgd-os2.csv", DataFrame; missingstring=[".", ""]) | ||
tgd_os_pop = read_pumas( | ||
df, | ||
observations = [:SLD, :Death], | ||
covariates = [:WT, :AGE, :SEX], | ||
event_data = false, | ||
) | ||
|
||
tgd_os_model = @model begin | ||
@param begin | ||
# Typical values of the coefficients of the predictors of SLD | ||
β ∈ VectorDomain(2, init = [1.0, -1.0]) | ||
# IIV of the coefficients of the predictors of SLD | ||
Ω ∈ PSDDomain(init = [16.0 0.0; 0.0 1.0]) | ||
# SLD residual error | ||
σ ∈ RealDomain(lower = 0.0, init = 1.0) | ||
|
||
# Log logistic hazard function parameters | ||
h0 ∈ RealDomain(lower = 0.0, init = 0.001) | ||
κ ∈ RealDomain(; lower=0.0, init = 1.1) | ||
# Effect of SLD on hazard | ||
α ∈ RealDomain(init = 0.001) | ||
# Coefficients of all the other predictors of hazard | ||
γ ∈ VectorDomain(2, init = [0.01, 0.01]) | ||
end | ||
@random begin | ||
η ~ MvNormal(Ω) | ||
end | ||
@covariates begin | ||
AGE | ||
SEX | ||
end | ||
@pre begin | ||
# mean SLD | ||
m = (β[1] + η[1]) + (β[2] + η[2]) * t | ||
# log logistic instanenous hazard | ||
sexn = SEX == "Female" ? 0.0 : 1.0 | ||
h = h0 * exp(γ[1] * AGE + γ[2] * sexn + α * m) | ||
λ = h * κ * (h * t + 1e-10)^(κ - 1) / (1 + (h * t + 1e-10)^κ) | ||
end | ||
@dynamics begin | ||
# cumulative hazard | ||
Λ' = λ | ||
end | ||
@derived begin | ||
SLD ~ @. Normal(m, σ) | ||
Death ~ @. TimeToEvent(λ, Λ) | ||
end | ||
end | ||
|
||
nsubj = round(Int, 0.8 * length(tgd_os_pop)) | ||
loglikelihood(tgd_os_model, tgd_os_pop[1:nsubj], init_params(tgd_os_model), LaplaceI()) | ||
|
||
tgd_os_fpm = fit( | ||
tgd_os_model, | ||
tgd_os_pop[1:nsubj], | ||
init_params(tgd_os_model), | ||
LaplaceI(), | ||
) | ||
|
||
validation_ll = loglikelihood( | ||
tgd_os_model, | ||
tgd_os_pop[nsubj+1:end], | ||
coef(tgd_os_fpm), | ||
LaplaceI(), | ||
) | ||
|
||
# Simulation/VPC workaround until next Pumas version | ||
|
||
tgd_model = @model begin | ||
@param begin | ||
# Typical values of the coefficients of the predictors of SLD | ||
β ∈ VectorDomain(2, init = [1.0, -1.0]) | ||
# IIV of the coefficients of the predictors of SLD | ||
Ω ∈ PSDDomain(init = [16.0 0.0; 0.0 1.0]) | ||
# SLD residual error | ||
σ ∈ RealDomain(lower = 0.0, init = 1.0) | ||
|
||
# Log logistic hazard function parameters | ||
h0 ∈ RealDomain(lower = 0.0, init = 0.001) | ||
κ ∈ RealDomain(; lower=0.0, init = 1.1) | ||
# Effect of SLD on hazard | ||
α ∈ RealDomain(init = 0.001) | ||
# Coefficients of all the other predictors of hazard | ||
γ ∈ VectorDomain(2, init = [0.01, 0.01]) | ||
end | ||
@random begin | ||
η ~ MvNormal(Ω) | ||
end | ||
@covariates begin | ||
AGE | ||
SEX | ||
end | ||
@pre begin | ||
# mean SLD | ||
m = (β[1] + η[1]) + (β[2] + η[2]) * t | ||
# log logistic instanenous hazard | ||
sexn = SEX == "Female" ? 0.0 : 1.0 | ||
h = h0 * exp(γ[1] * AGE + γ[2] * sexn + α * m) | ||
λ = h * κ * (h * t + 1e-10)^(κ - 1) / (1 + (h * t + 1e-10)^κ) | ||
end | ||
@derived begin | ||
SLD ~ @. Normal(m, σ) | ||
end | ||
end | ||
tgd_pop = read_pumas( | ||
df, | ||
observations = [:SLD], | ||
covariates = [:WT, :AGE, :SEX], | ||
event_data = false, | ||
) | ||
tgd_fpm = fit( | ||
tgd_model, | ||
tgd_pop, | ||
coef(tgd_os_fpm), | ||
LaplaceI(); | ||
checkidentification = false, | ||
optim_options = (iterations = 0,), | ||
) | ||
tgd_insp = inspect(tgd_fpm) | ||
sf_sld = subject_fits( | ||
tgd_insp, | ||
separate = true, | ||
ids = string.(1:16), | ||
facet = (combinelabels = true,), | ||
axis = ( | ||
xlabel = "Time (days)", | ||
xticklabelrotation = pi / 4, | ||
) | ||
) | ||
sf_sld | ||
|
||
tgd_vpc_res = vpc( | ||
tgd_fpm, | ||
observations = [:SLD], | ||
bandwidth = 20, | ||
ensemblealg = EnsembleThreads(), | ||
) | ||
# not a very good TGD model! | ||
vpc_plot( | ||
tgd_vpc_res; | ||
simquantile_medians = true, | ||
observations = false, | ||
axis = (xlabel = "Time (days)", ylabel = "Sum of Longest Diameter"), | ||
) | ||
|
||
os_model = @model begin | ||
@param begin | ||
# Typical values of the coefficients of the predictors of SLD | ||
β ∈ VectorDomain(2, init = [1.0, -1.0]) | ||
# IIV of the coefficients of the predictors of SLD | ||
Ω ∈ PSDDomain(init = [16.0 0.0; 0.0 1.0]) | ||
# SLD residual error | ||
σ ∈ RealDomain(lower = 0.0, init = 1.0) | ||
|
||
# Log logistic hazard function parameters | ||
h0 ∈ RealDomain(lower = 0.0, init = 0.001) | ||
κ ∈ RealDomain(; lower=0.0, init = 1.1) | ||
# Effect of SLD on hazard | ||
α ∈ RealDomain(init = 0.001) | ||
# Coefficients of all the other predictors of hazard | ||
γ ∈ VectorDomain(2, init = [0.01, 0.01]) | ||
end | ||
@random begin | ||
η ~ MvNormal(Ω) | ||
end | ||
@covariates begin | ||
AGE | ||
SEX | ||
end | ||
@pre begin | ||
# mean SLD | ||
m = (β[1] + η[1]) + (β[2] + η[2]) * t | ||
# log logistic instanenous hazard | ||
sexn = SEX == "Female" ? 0.0 : 1.0 | ||
h = h0 * exp(γ[1] * AGE + γ[2] * sexn + α * m) | ||
λ = h * κ * (h * t + 1e-10)^(κ - 1) / (1 + (h * t + 1e-10)^κ) | ||
end | ||
@dynamics begin | ||
# cumulative hazard | ||
Λ' = λ | ||
end | ||
@derived begin | ||
Death ~ @. TimeToEvent(λ, Λ) | ||
end | ||
end | ||
|
||
os_pop = read_pumas( | ||
df, | ||
observations = [:Death], | ||
covariates = [:WT, :AGE, :SEX], | ||
event_data = false, | ||
) | ||
os_fpm = fit( | ||
os_model, | ||
os_pop, | ||
coef(tgd_os_fpm), | ||
LaplaceI(); | ||
checkidentification = false, | ||
optim_options = (iterations = 0,), | ||
) | ||
vpc_res_os = vpc( | ||
os_fpm, | ||
observations = [:Death], | ||
ensemblealg = EnsembleThreads(), | ||
) | ||
vpc_plot( | ||
vpc_res_os; | ||
axis = (xlabel = "Time (days)",), | ||
) |
Oops, something went wrong.