Skip to content

Q-Future/Visual-Question-Answering-for-Video-Quality-Assessment

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

VQA²-Visual-Question-Answering-for-Video-Quality-Assessment

Official code and dataset for VQA² series models and dataset

Release News

  • **[2024/12/20] We have replaced or fixed some code files in VQA_main to ensure the training process is reproducible. Now the training process can be implemented as long as your environment configuration strictly follows our guidelines!

🔥Exellent Performance on Video Quality Scoring and Video Quality Understanding!!!

🔥Dataset Construction Pipeline:

🔥Model Structure:

🔖 TODO:

  • [√] Release testing and training code.
  • [√] Release model weights.
  • [√] Release the stage-2 instruction dataset.
  • [√] Release the stage-3 instruction dataset.
  • Provide HuggingFace demo.
  • 🔥🔥🔥ULTRA-TARGET: Scaling up the dataset to over 1,000,000 pairs.

Quicker Start:

Install dependencies:

cd VQA_main
conda create -n VQA python=3.10 -y
conda activate VQA
pip install --upgrade pip  # Enable PEP 660 support.
pip install -e ".[train]"
pip install pytorchvideo #For slowfast base model download
pip install transformers==4.44.0 #Change the transformers version

Fix:[2024.12.20] You may have to download the initialized slowfast.pth (https://huggingface.co/JZHWS/slowfast) and load the pretrained model in "llava\model\slowfast\builder.py"(line 11) to make sure the model initialization is implementable since the model downloaded through pytorchvideo includes meta tensors.

NOTE!!! Replace the

your_env_dir/VQA/lib/python3.10/site-packages/transformers/models/qwen2/modeling_qwen2.py

to

VQA_main/modeling_qwen2.py (we set some customized parameters in it).

VQA² Scorers:

cd VQA_main

For UGC-Video Scoring:

python ./llava/eval/model_score_UGC.py

For Streaming-Video Scoring:

python ./llava/eval/model_score_streaming.py

VQA² Assistant:

cd VQA_benchmark_test

For Q-bench-video Evaluation:

python ./llava/eval/model_vqa_q_bench_video.py

For Simple Q&A:

python ./llava/eval/model_conv.py

Gradio demo:

python ./app.py #Note that the minimum GPU requirement is 3090(24G)*1.

Training

cd VQA_main

chmod +x ./scripts/train/finetune_VQA².sh

Then directly execute this .sh file. Note that we only support training with per_device_train_batch_size=1.

Training Dataset

Stage-2-streaming (2.1K): https://huggingface.co/datasets/q-future/VQA-stage2-streaming (q-future/VQA-stage2-streaming)

Stage-3 (14.3K mix/11.6K only): https://huggingface.co/datasets/q-future/VQA-stage3 (q-future/VQA-stage3)

NOTE!!! The Stage-2-UGC part is in Stage3-mix part in https://huggingface.co/datasets/q-future/VQA-stage3

Model Zoo

We temporarily provide the huggingface weight of VQA²-UGC-Scorer(7B) ,VQA²-Streaming-Scorer(7B), and VQA²-Assistant(7B); more versions will be released later.

HF-PATH:

VQA²-UGC-Scorer(7B): https://huggingface.co/q-future/VQA-UGC-Scorer-llava_qwen (q-future/VQA-UGC-Scorer-llava_qwen)

VQA²-Streaming-Scorer(7B): https://huggingface.co/q-future/VQA-Streaming-Scorer-llava_qwen (q-future/VQA-Streaming-Scorer-llava_qwen)

VQA²-Assistant(7B): https://huggingface.co/q-future/VQA-Assistant-llava_qwen (q-future/VQA-Assistant-llava_qwen)

Citation

If you consider this work interesting, please feel free to cite it in your work!

@article{jia2024vqa,
  title={VQA $\^{} 2$: Visual Question Answering for Video Quality Assessment},
  author={Jia, Ziheng and Zhang, Zicheng and Qian, Jiaying and Wu, Haoning and Sun, Wei and Li, Chunyi and Liu, Xiaohong and Lin, Weisi and Zhai, Guangtao and Min, Xiongkuo},
  journal={arXiv preprint arXiv:2411.03795},
  year={2024}
}
}
@article{zhang2024q,
  title={Q-Bench-Video: Benchmarking the Video Quality Understanding of LMMs},
  author={Zhang, Zicheng and Jia, Ziheng and Wu, Haoning and Li, Chunyi and Chen, Zijian and Zhou, Yingjie and Sun, Wei and Liu, Xiaohong and Min, Xiongkuo and Lin, Weisi and others},
  journal={arXiv preprint arXiv:2409.20063},
  year={2024}
}

About

Official released code for VQA² series models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published