Skip to content

Commit

Permalink
enable Lifted Product Code tests and reintroduce piracy (#371)
Browse files Browse the repository at this point in the history
* enable Lifted Product Code tests and reintroduce piracy

* do not use reuse the "lift" name in a non-idiomatic-for-Nemo way

* simplify the representation function call in LPCode
  • Loading branch information
Krastanov authored Sep 27, 2024
1 parent 57a0069 commit 4e06c01
Show file tree
Hide file tree
Showing 9 changed files with 55 additions and 71 deletions.
3 changes: 2 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,10 +5,11 @@

# News

## v0.9.11-dev
## v0.9.11

- `hcat` of Tableaux objects
- `QuantumReedMuller` codes added to the ECC module
- **(breaking)** change the convention for how to provide a representation function in the constructor of `LPCode` -- strictly speaking a breaking change, but this is not an API that is publicly used in practice

## v0.9.10 - 2024-09-26

Expand Down
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "QuantumClifford"
uuid = "0525e862-1e90-11e9-3e4d-1b39d7109de1"
authors = ["Stefan Krastanov <stefan@krastanov.org> and QuantumSavory community members"]
version = "0.9.11-dev"
version = "0.9.11"

[deps]
Combinatorics = "861a8166-3701-5b0c-9a16-15d98fcdc6aa"
Expand Down
3 changes: 2 additions & 1 deletion ext/QuantumCliffordHeckeExt/QuantumCliffordHeckeExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,8 @@ import QuantumClifford, LinearAlgebra
import Hecke: Group, GroupElem, AdditiveGroup, AdditiveGroupElem,
GroupAlgebra, GroupAlgebraElem, FqFieldElem, representation_matrix, dim, base_ring,
multiplication_table, coefficients, abelian_group, group_algebra
import Nemo: characteristic, matrix_repr, GF, ZZ
import Nemo
import Nemo: characteristic, matrix_repr, GF, ZZ, lift

import QuantumClifford.ECC: AbstractECC, CSS, ClassicalCode,
hgp, code_k, code_n, code_s, iscss, parity_checks, parity_checks_x, parity_checks_z, parity_checks_xz,
Expand Down
22 changes: 13 additions & 9 deletions ext/QuantumCliffordHeckeExt/lifted.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,10 +22,11 @@ The default `GA` is the group algebra of `A[1, 1]`, the default representation `
## The representation function `repr`
In this struct, we use the default representation function `default_repr` to convert a `GF(2)`-group algebra element to a binary matrix.
We use the default representation function `Hecke.representation_matrix` to convert a `GF(2)`-group algebra element to a binary matrix.
The default representation, provided by `Hecke`, is the permutation representation.
We also accept a custom representation function.
We also accept a custom representation function (the `repr` field of the constructor).
Whatever the representation, the matrix elements need to be convertible to Integers (e.g. permit `lift(ZZ, ...)`).
Such a customization would be useful to reduce the number of bits required by the code construction.
For example, if we use a D4 group for lifting, our default representation will be `8×8` permutation matrices,
Expand Down Expand Up @@ -54,14 +55,12 @@ struct LiftedCode <: ClassicalCode
end
end

default_repr(y::GroupAlgebraElem{FqFieldElem, <: GroupAlgebra}) = Matrix((x -> Bool(Int(lift(ZZ, x)))).(representation_matrix(y)))

"""
`LiftedCode` constructor using the default `GF(2)` representation (coefficients converted to a permutation matrix by `representation_matrix` provided by Hecke).
""" # TODO doctest example
function LiftedCode(A::Matrix{GroupAlgebraElem{FqFieldElem, <: GroupAlgebra}}; GA::GroupAlgebra=parent(A[1,1]))
!(characteristic(base_ring(A[1, 1])) == 2) && error("The default permutation representation applies only to GF(2) group algebra; otherwise, a custom representation function should be provided")
LiftedCode(A; GA=GA, repr=default_repr)
LiftedCode(A; GA=GA, repr=representation_matrix)
end

# TODO document and doctest example
Expand All @@ -71,7 +70,7 @@ function LiftedCode(group_elem_array::Matrix{<: GroupOrAdditiveGroupElem}; GA::G
A[i, j] = GA[A[i, j]]
end
if repr === nothing
return LiftedCode(A; GA=GA, repr=default_repr)
return LiftedCode(A; GA=GA, repr=representation_matrix)
else
return LiftedCode(A; GA=GA, repr=repr)
end
Expand All @@ -85,11 +84,16 @@ function LiftedCode(shift_array::Matrix{Int}, l::Int; GA::GroupAlgebra=group_alg
A[i, j] = GA[shift_array[i, j]%l+1]
end
end
return LiftedCode(A; GA=GA, repr=default_repr)
return LiftedCode(A; GA=GA, repr=representation_matrix)
end

function lift(repr::Function, mat::GroupAlgebraElemMatrix)
vcat([hcat([repr(mat[i, j]) for j in axes(mat, 2)]...) for i in axes(mat, 1)]...)
lift_to_bool(x) = Bool(Int(lift(ZZ,x)))

function concat_lift_repr(repr, mat)
x = repr.(mat)
y = hvcat(size(x,2), transpose(x)...)
z = Matrix(lift_to_bool.(y))
return z
end

function parity_checks(c::LiftedCode)
Expand Down
10 changes: 5 additions & 5 deletions ext/QuantumCliffordHeckeExt/lifted_product.jl
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ julia> code_n(c2), code_k(c2)
## The representation function
In this struct, we use the default representation function `default_repr` to convert a `GF(2)`-group algebra element to a binary matrix.
We use the default representation function `Hecke.representation_matrix` to convert a `GF(2)`-group algebra element to a binary matrix.
The default representation, provided by `Hecke`, is the permutation representation.
We also accept a custom representation function as detailed in [`LiftedCode`](@ref).
Expand Down Expand Up @@ -107,24 +107,24 @@ end

# TODO document and doctest example
function LPCode(A::FqFieldGroupAlgebraElemMatrix, B::FqFieldGroupAlgebraElemMatrix; GA::GroupAlgebra=parent(A[1,1]))
LPCode(LiftedCode(A; GA=GA, repr=default_repr), LiftedCode(B; GA=GA, repr=default_repr); GA=GA, repr=default_repr)
LPCode(LiftedCode(A; GA=GA, repr=representation_matrix), LiftedCode(B; GA=GA, repr=representation_matrix); GA=GA, repr=representation_matrix)
end

# TODO document and doctest example
function LPCode(group_elem_array1::Matrix{<: GroupOrAdditiveGroupElem}, group_elem_array2::Matrix{<: GroupOrAdditiveGroupElem}; GA::GroupAlgebra=group_algebra(GF(2), parent(group_elem_array1[1,1])))
LPCode(LiftedCode(group_elem_array1; GA=GA), LiftedCode(group_elem_array2; GA=GA); GA=GA, repr=default_repr)
LPCode(LiftedCode(group_elem_array1; GA=GA), LiftedCode(group_elem_array2; GA=GA); GA=GA, repr=representation_matrix)
end

# TODO document and doctest example
function LPCode(shift_array1::Matrix{Int}, shift_array2::Matrix{Int}, l::Int; GA::GroupAlgebra=group_algebra(GF(2), abelian_group(l)))
LPCode(LiftedCode(shift_array1, l; GA=GA), LiftedCode(shift_array2, l; GA=GA); GA=GA, repr=default_repr)
LPCode(LiftedCode(shift_array1, l; GA=GA), LiftedCode(shift_array2, l; GA=GA); GA=GA, repr=representation_matrix)
end

iscss(::Type{LPCode}) = true

function parity_checks_xz(c::LPCode)
hx, hz = hgp(c.A, c.B')
hx, hz = lift(c.repr, hx), lift(c.repr, hz)
hx, hz = concat_lift_repr(c.repr,hx), concat_lift_repr(c.repr,hz)
return hx, hz
end

Expand Down
2 changes: 1 addition & 1 deletion ext/QuantumCliffordHeckeExt/types.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ Compute the adjoint of a group algebra element.
The adjoint is defined as the conjugate of the element in the group algebra,
i.e. the inverse of the element in the associated group.
"""
function _adjoint(a::GroupAlgebraElem{T}) where T # TODO Is this used? Should it be deleted?
function Base.adjoint(a::GroupAlgebraElem{T}) where T # TODO we would like to use Base.adjoint, but that would be type piracy. Upstream this to Nemo or Hecke or AbstractAlgebra
A = parent(a)
d = dim(A)
v = Vector{T}(undef, d)
Expand Down
18 changes: 9 additions & 9 deletions test/test_ecc_base.jl
Original file line number Diff line number Diff line change
Expand Up @@ -57,20 +57,20 @@ B = reshape([1 + x + x^6], (1, 1))
push!(other_lifted_product_codes, LPCode(A, B))

const code_instance_args = Dict(
Toric => [(3,3), (4,4), (3,6), (4,3), (5,5)],
Surface => [(3,3), (4,4), (3,6), (4,3), (5,5)],
Gottesman => [3, 4, 5],
CSS => (c -> (parity_checks_x(c), parity_checks_z(c))).([Shor9(), Steane7(), Toric(4, 4)]),
Concat => [(Perfect5(), Perfect5()), (Perfect5(), Steane7()), (Steane7(), Cleve8()), (Toric(2, 2), Shor9())],
CircuitCode => random_circuit_code_args,
LPCode => (c -> (c.A, c.B)).(vcat(LP04, LP118, test_gb_codes, other_lifted_product_codes)),
QuantumReedMuller => [3, 4, 5]
:Toric => [(3,3), (4,4), (3,6), (4,3), (5,5)],
:Surface => [(3,3), (4,4), (3,6), (4,3), (5,5)],
:Gottesman => [3, 4, 5],
:CSS => (c -> (parity_checks_x(c), parity_checks_z(c))).([Shor9(), Steane7(), Toric(4, 4)]),
:Concat => [(Perfect5(), Perfect5()), (Perfect5(), Steane7()), (Steane7(), Cleve8()), (Toric(2, 2), Shor9())],
:CircuitCode => random_circuit_code_args,
:LPCode => (c -> (c.A, c.B)).(vcat(LP04, LP118, test_gb_codes, other_lifted_product_codes)),
:QuantumReedMuller => [3, 4, 5]
)

function all_testablable_code_instances(;maxn=nothing)
codeinstances = []
for t in subtypes(QuantumClifford.ECC.AbstractECC)
for c in get(code_instance_args, t, [])
for c in get(code_instance_args, t.name.name, [])
codeinstance = t(c...)
!isnothing(maxn) && nqubits(codeinstance) > maxn && continue
push!(codeinstances, codeinstance)
Expand Down
2 changes: 1 addition & 1 deletion test/test_ecc_codeproperties.jl
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@
@test code_s(code) + code_k(code) >= code_n(code) # possibly exist redundant checks
_, _, rank = canonicalize!(copy(H), ranks=true)
@test rank <= size(H, 1)
@test QuantumClifford.stab_looks_good(copy(H))
@test QuantumClifford.stab_looks_good(copy(H), remove_redundant_rows=true)
end
end
end
64 changes: 21 additions & 43 deletions test/test_ecc_decoder_all_setups.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@
#@show c
#@show s
#@show e
@assert max(e...) < noise/4
@test max(e...) < noise/4
end
end
end
Expand All @@ -35,31 +35,36 @@
##

@testset "belief prop decoders, good for sparse codes" begin
codes = [
# TODO
]
codes = vcat(LP04, LP118, test_gb_codes, other_lifted_product_codes)

noise = 0.001

setups = [
CommutationCheckECCSetup(noise),
NaiveSyndromeECCSetup(noise, 0),
ShorSyndromeECCSetup(noise, 0),
]
CommutationCheckECCSetup(noise),
NaiveSyndromeECCSetup(noise, 0),
ShorSyndromeECCSetup(noise, 0),
]
# lifted product codes currently trigger errors in syndrome circuits

for c in codes
for s in setups
for d in [c->PyBeliefPropOSDecoder(c, maxiter=10)]
e = evaluate_decoder(d(c), s, 100000)
@show c
@show s
@show e
@assert max(e...) < noise/4
for d in [c -> PyBeliefPropOSDecoder(c, maxiter=2)]
nsamples = 10000
if true
@test_broken false # TODO these are too slow to test in CI
continue
end
e = evaluate_decoder(d(c), s, nsamples)
# @show c
# @show s
# @show e
@test max(e...) <= noise
end
end
end
end


@testset "BitFlipDecoder decoder, good for sparse codes" begin
codes = [
QuantumReedMuller(3),
Expand All @@ -81,7 +86,7 @@
#@show c
#@show s
#@show e
@assert max(e...) < noise/4
@test max(e...) < noise/4
end
end
end
Expand Down Expand Up @@ -118,34 +123,7 @@
#@show c
#@show s
#@show e
@assert max(e...) < noise/5
end
end
end
end

@testset "belief prop decoders, good for sparse codes" begin
codes = vcat(LP04, LP118, test_gb_codes, other_lifted_product_codes)

noise = 0.001

setups = [
CommutationCheckECCSetup(noise),
NaiveSyndromeECCSetup(noise, 0),
ShorSyndromeECCSetup(noise, 0),
]
# lifted product codes currently trigger errors in syndrome circuits

for c in codes
for s in setups
for d in [c -> PyBeliefPropOSDecoder(c, maxiter=10)]
nsamples = code_n(c) > 400 ? 1000 : 100000
# take fewer samples for larger codes to save time
e = evaluate_decoder(d(c), s, nsamples)
# @show c
# @show s
# @show e
@assert max(e...) < noise / 4 (c, s, e)
@test max(e...) < noise/5
end
end
end
Expand Down

2 comments on commit 4e06c01

@Krastanov
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/116161

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.9.11 -m "<description of version>" 4e06c0184a6ccef4894bb3790310ce84cd6a54f5
git push origin v0.9.11

Please sign in to comment.