Skip to content

Commit

Permalink
add random Clifford circuit codes (#298)
Browse files Browse the repository at this point in the history

---------

Co-authored-by: Stefan Krastanov <github.acc@krastanov.org>
  • Loading branch information
royess and Krastanov authored Jul 4, 2024
1 parent dddaedb commit 59e399d
Show file tree
Hide file tree
Showing 10 changed files with 184 additions and 15 deletions.
10 changes: 7 additions & 3 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,15 +5,19 @@

# News

## v0.9.5 - 2024-07-04

- Implementation of random all-to-all and brickwork Clifford circuits and corresponding ECC codes.

## v0.9.4 - 2024-06-28

- Addition of a constructor for concatenated quantum codes -- `Concat`.
- Addition of a constructor for concatenated quantum codes `Concat`.
- Addition of multiple unexported classical code constructors.
- Failed compactification of gates now only raises a warning instead of throwing an error. Defaults to slower non-compactified gates.
- Gate errors are now conveniently supported by the various ECC benchmark setups in the `ECC` module.
- Remove printing of spurious debug info from the PyBP decoder.
- Significant improvements to the low-level circuit compiler (the sumtype compactifier), leading to faster Pauli frame simulation of noisy circuits.
- Bump `QuantumOpticsBase.jl` package extension compat bound.
- **(fix)** Remove printing of spurious debug info from the PyBP decoder.
- **(fix)** Failed compactification of gates now only raises a warning instead of throwing an error. Defaults to slower non-compactified gates.

## v0.9.3 - 2024-04-10

Expand Down
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "QuantumClifford"
uuid = "0525e862-1e90-11e9-3e4d-1b39d7109de1"
authors = ["Stefan Krastanov <stefan@krastanov.org> and QuantumSavory community members"]
version = "0.9.4"
version = "0.9.5"

[deps]
Combinatorics = "861a8166-3701-5b0c-9a16-15d98fcdc6aa"
Expand Down
26 changes: 21 additions & 5 deletions docs/src/references.bib
Original file line number Diff line number Diff line change
Expand Up @@ -165,11 +165,17 @@ @article{grassl2002algorithmic

% Examples of results that employ the tableaux formalism
@article{gullans2020quantum,
title={Quantum coding with low-depth random circuits},
author={Gullans, Michael J and Krastanov, Stefan and Huse, David A and Jiang, Liang and Flammia, Steven T},
journal={arXiv preprint arXiv:2010.09775},
year={2020}
@article{gullans2021quantum,
title = {Quantum {{Coding}} with {{Low-Depth Random Circuits}}},
author = {Gullans, Michael J. and Krastanov, Stefan and Huse, David A. and Jiang, Liang and Flammia, Steven T.},
year = {2021},
month = sep,
journal = {Physical Review X},
volume = {11},
number = {3},
pages = {031066},
issn = {2160-3308},
doi = {10.1103/PhysRevX.11.031066}
}

@article{krastanov2020heterogeneous,
Expand Down Expand Up @@ -386,3 +392,13 @@ @article{knill1996concatenated
journal={arXiv preprint quant-ph/9608012},
year={1996}
}

@inproceedings{brown2013short,
title = {Short Random Circuits Define Good Quantum Error Correcting Codes},
booktitle = {2013 {{IEEE International Symposium}} on {{Information Theory}}},
author = {Brown, Winton and Fawzi, Omar},
year = {2013},
month = jul,
pages = {346--350},
doi = {10.1109/ISIT.2013.6620245}
}
2 changes: 1 addition & 1 deletion docs/src/tutandpub.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ This list has a number of notebooks with tutorials, examples, and reproduction o

## On the topic of explicit use of the Tableaux formalism for Stabilizer states

- [Quantum coding with low-depth random circuits](https://github.com/QuantumSavory/QuantumClifford.jl/blob/master/docs/src/notebooks/Stabilizer_Codes_Based_on_Random_Circuits.ipynb) reproducing results from [gullans2020quantum](@cite). [view on nbviewer.jupyter.org](https://nbviewer.jupyter.org/github/QuantumSavory/QuantumClifford.jl/blob/master/docs/src/notebooks/Stabilizer_Codes_Based_on_Random_Circuits.ipynb)
- [Quantum coding with low-depth random circuits](https://github.com/QuantumSavory/QuantumClifford.jl/blob/master/docs/src/notebooks/Stabilizer_Codes_Based_on_Random_Circuits.ipynb) reproducing results from [gullans2021quantum](@cite). [view on nbviewer.jupyter.org](https://nbviewer.jupyter.org/github/QuantumSavory/QuantumClifford.jl/blob/master/docs/src/notebooks/Stabilizer_Codes_Based_on_Random_Circuits.ipynb)


## On the Monte Carlo and Perturbative Expansions for **Noisy** Clifford circuits
Expand Down
1 change: 1 addition & 0 deletions src/QuantumClifford.jl
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,7 @@ export
random_invertible_gf2,
random_pauli, random_pauli!,
random_stabilizer, random_destabilizer, random_clifford,
random_brickwork_clifford_circuit, random_all_to_all_clifford_circuit,
# Noise
applynoise!, UnbiasedUncorrelatedNoise, NoiseOp, NoiseOpAll, NoisyGate,
PauliNoise, PauliError,
Expand Down
4 changes: 3 additions & 1 deletion src/ecc/ECC.jl
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,8 @@ export parity_checks, parity_checks_x, parity_checks_z, iscss,
RepCode,
CSS,
Shor9, Steane7, Cleve8, Perfect5, Bitflip3,
Toric, Gottesman, Surface, Concat,
Toric, Gottesman, Surface, Concat, CircuitCode,
random_brickwork_circuit_code, random_all_to_all_circuit_code,
evaluate_decoder,
CommutationCheckECCSetup, NaiveSyndromeECCSetup, ShorSyndromeECCSetup,
TableDecoder,
Expand Down Expand Up @@ -359,6 +360,7 @@ include("codes/toric.jl")
include("codes/gottesman.jl")
include("codes/surface.jl")
include("codes/concat.jl")
include("codes/random_circuit.jl")
include("codes/classical/reedmuller.jl")
include("codes/classical/bch.jl")
end #module
79 changes: 79 additions & 0 deletions src/ecc/codes/random_circuit.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
using Random: AbstractRNG, GLOBAL_RNG


"""
`CircuitCode` is defined by a given encoding circuit `circ`.
- `n`: qubit number
- `circ`: the encoding circuit
- `encode_qubits`: the qubits to be encoded
See also: [`random_all_to_all_circuit_code`](@ref), [`random_brickwork_circuit_code`](@ref)
"""
struct CircuitCode <: AbstractECC
n::Int
circ::Vector{QuantumClifford.AbstractOperation}
encode_qubits::AbstractArray
end

iscss(::Type{CircuitCode}) = nothing

code_n(c::CircuitCode) = c.n

code_k(c::CircuitCode) = length(c.encode_qubits)

function parity_checks(c::CircuitCode)
n = code_n(c)
checks = one(Stabilizer, n)[setdiff(1:n, c.encode_qubits)]
for op in c.circ
apply!(checks, op)
end
checks
end

"""
Random all-to-all Clifford circuit code [brown2013short](@cite).
The code of `n` qubits is generated by an all-to-all random Clifford circuit of `ngates` gates that encodes a subset of qubits `encode_qubits` into logical qubits.
Because of the random picking, the size of `encode_qubits` is the only thing that matters for the code, referred to as `k`.
See also: [`random_all_to_all_clifford_circuit`](@ref), [`CircuitCode`](@ref)
"""
function random_all_to_all_circuit_code end

function random_all_to_all_circuit_code(rng::AbstractRNG, n::Int, ngates::Int, k::Int)
CircuitCode(n, random_all_to_all_clifford_circuit(rng, n, ngates), collect(1:k))
end

function random_all_to_all_circuit_code(n::Int, ngates::Int, k::Int)
CircuitCode(n, random_all_to_all_clifford_circuit(n, ngates), collect(1:k))
end

function random_all_to_all_circuit_code(rng::AbstractRNG, n::Int, ngates::Int, encode_qubits::AbstractArray)
CircuitCode(n, random_all_to_all_clifford_circuit(rng, n, ngates), encode_qubits)
end

function random_all_to_all_circuit_code(n::Int, ngates::Int, encode_qubits::AbstractArray)
CircuitCode(n, random_all_to_all_clifford_circuit(n, ngates), encode_qubits)
end


"""
Random brickwork Clifford circuit code [brown2013short](@cite).
The code is generated by a brickwork random Clifford circuit of `nlayers` layers that encodes a subset of qubits `encode_qubits` into logical qubits.
See also: [`random_brickwork_clifford_circuit`](@ref), [`CircuitCode`](@ref)
"""
function random_brickwork_circuit_code end

# TODO it would be nicer if we can use CartesianIndex for `encode_qubits` in brickworks,
# but its conversion to LinearIndex is limited, not supporting non-one step.
function random_brickwork_circuit_code(rng::AbstractRNG, lattice_size::NTuple{N,Int} where {N}, nlayers::Int, encode_qubits::AbstractArray)
CircuitCode(prod(lattice_size), random_brickwork_clifford_circuit(rng, lattice_size, nlayers), encode_qubits)
end

function random_brickwork_circuit_code(lattice_size::NTuple{N,Int} where {N}, nlayers::Int, encode_qubits::AbstractArray)
CircuitCode(prod(lattice_size), random_brickwork_clifford_circuit(lattice_size, nlayers), encode_qubits)
end
4 changes: 2 additions & 2 deletions src/entanglement.jl
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@ It is the list of endpoints of a tableau in the clipped gauge.
If `clip=true` (the default) the tableau is converted to the clipped gauge in-place before calculating the bigram.
Otherwise, the clip gauge conversion is skipped (for cases where the input is already known to be in the correct gauge).
Introduced in [nahum2017quantum](@cite), with a more detailed explanation of the algorithm in [li2019measurement](@cite) and [gullans2020quantum](@cite).
Introduced in [nahum2017quantum](@cite), with a more detailed explanation of the algorithm in [li2019measurement](@cite) and [gullans2021quantum](@cite).
See also: [`canonicalize_clip!`](@ref)
"""
Expand Down Expand Up @@ -186,7 +186,7 @@ function entanglement_entropy(state::AbstractStabilizer, subsystem_range::UnitRa
# JET-XXX The ::Matrix{Int} should not be necessary, but they help with inference
bg = bigram(state; clip=clip)::Matrix{Int}
# If the state is mixed, this formula is valid only for contiguous regions that don't wrap around.
# See Eq. E7 of gullans2020quantum.
# See Eq. E7 of gullans2021quantum.
# As subsystem_range is UnitRange, we know the formula will be valid.
length(subsystem_range) - count(r->(r[1] in subsystem_range && r[2] in subsystem_range), eachrow(bg))
end
Expand Down
57 changes: 57 additions & 0 deletions src/randoms.jl
Original file line number Diff line number Diff line change
Expand Up @@ -228,3 +228,60 @@ function fill_tril(rng, matrix, n; symmetric::Bool=false)
end
matrix
end

##############################
# Random circuit
##############################

"""
Random brickwork Clifford circuit.
The connectivity of the random circuit is brickwork in some dimensions. Each gate in the circuit is a random 2-qubit Clifford gate.
The brickwork is defined as follows: The qubits are arranged as a lattice, and `lattice_size` contains side length in each dimension.
For example, a chain of length five will have `lattice_size = (5,)`, and a 5×5 lattice will have `lattice_size = (5, 5)`.
In multi-dimensional cases, gate layers act alternatively along each direction.
The nearest two layers along the same direction are offset by one qubit, forming a so-called brickwork.
The boundary condition is chosen as open.
"""
function random_brickwork_clifford_circuit(rng::AbstractRNG, lattice_size::NTuple{N,Int} where {N}, nlayers::Int)
circ = QuantumClifford.SparseGate[]
cartesian = CartesianIndices(lattice_size)
dim = length(lattice_size)
nqubits = prod(lattice_size)
for i in 1:nlayers
gate_direction = (i - 1) % dim + 1
l = lattice_size[gate_direction]
brickwise_parity = dim == 1 ? i % 2 : 1 - (i ÷ dim) % 2
for j in 1:nqubits
cardj = collect(cartesian[j].I)
if cardj[gate_direction] % 2 == brickwise_parity && cardj[gate_direction] != l # open boundary
cardk = cardj
cardk[gate_direction] = cardk[gate_direction] + 1
k = LinearIndices(cartesian)[cardk...]
push!(circ, SparseGate(random_clifford(rng, 2), [j, k]))
end
end
end
circ
end

random_brickwork_clifford_circuit(lattice_size::NTuple{N,Int} where {N}, nlayers::Int) = random_brickwork_clifford_circuit(GLOBAL_RNG, lattice_size, nlayers)

"""
Random all-to-all Clifford circuit.
The circuit contains `nqubits` qubits and `ngates` gates. The connectivity is all to all. Each gate in the circuit is a random 2-qubit Clifford gate on randomly picked two qubits.
"""
function random_all_to_all_clifford_circuit(rng::AbstractRNG, nqubits::Int, ngates::Int)
circ = QuantumClifford.SparseGate[]
for i in 1:ngates
j = rand(1:nqubits)
k = rand(1:nqubits-1)
push!(circ, SparseGate(random_clifford(rng, 2), [j, (j + k - 1) % nqubits + 1]))
end
circ
end

random_all_to_all_clifford_circuit(nqubits::Int, ngates::Int) = random_all_to_all_clifford_circuit(GLOBAL_RNG, nqubits, ngates)
14 changes: 12 additions & 2 deletions test/test_ecc_base.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,22 @@ using InteractiveUtils

# generate instances of all implemented codes to make sure nothing skips being checked

# We do not include smaller random circuit code because some of them has a bad distance and fails the TableDecoder test
const random_brickwork_circuit_args = repeat([((20,), 50, [1]), ((20,), 50, 1:2:20), ((5, 5), 50, [1]), ((3, 3, 3), 50, [1])], 10)
const random_all_to_all_circuit_args = repeat([(20, 200, 1), (40, 200, [1, 20])], 10)

random_circuit_code_args = vcat(
[map(f -> getfield(random_brickwork_circuit_code(c...), f), fieldnames(CircuitCode)) for c in random_brickwork_circuit_args],
[map(f -> getfield(random_all_to_all_circuit_code(c...), f), fieldnames(CircuitCode)) for c in random_all_to_all_circuit_args]
)

const code_instance_args = Dict(
Toric => [(3,3), (4,4), (3,6), (4,3), (5,5)],
Surface => [(3,3), (4,4), (3,6), (4,3), (5,5)],
Gottesman => [3, 4, 5],
CSS => (c -> (parity_checks_x(c), parity_checks_z(c))).([Shor9(), Steane7(), Toric(4,4)]),
Concat => [(Perfect5(), Perfect5()), (Perfect5(), Steane7()), (Steane7(), Cleve8()), (Toric(2,2), Shor9())],
CSS => (c -> (parity_checks_x(c), parity_checks_z(c))).([Shor9(), Steane7(), Toric(4, 4)]),
Concat => [(Perfect5(), Perfect5()), (Perfect5(), Steane7()), (Steane7(), Cleve8()), (Toric(2, 2), Shor9())],
CircuitCode => random_circuit_code_args
)

function all_testablable_code_instances(;maxn=nothing)
Expand Down

2 comments on commit 59e399d

@Krastanov
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@JuliaRegistrator
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Registration pull request created: JuliaRegistries/General/110470

Tip: Release Notes

Did you know you can add release notes too? Just add markdown formatted text underneath the comment after the text
"Release notes:" and it will be added to the registry PR, and if TagBot is installed it will also be added to the
release that TagBot creates. i.e.

@JuliaRegistrator register

Release notes:

## Breaking changes

- blah

To add them here just re-invoke and the PR will be updated.

Tagging

After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.

This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via:

git tag -a v0.9.5 -m "<description of version>" 59e399d17ddb1430482ed343d221680754b54bf0
git push origin v0.9.5

Please sign in to comment.