-
Notifications
You must be signed in to change notification settings - Fork 50
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Enhancements to GF(2) Linear Algebra: in-place row echelon with pivot…
…s, nullspace, and basis for row space (#445)
- Loading branch information
Showing
3 changed files
with
232 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
@testitem "Row echelon with pivots" begin | ||
using Random | ||
using Nemo | ||
using Nemo: echelon_form, matrix, GF | ||
using QuantumClifford | ||
using QuantumClifford: gf2_row_echelon_with_pivots!, gf2_nullspace, gf2_rowspace_basis | ||
test_sizes = [1,2,10,63,64,65,127,128,129] | ||
|
||
@testset "GF(2) row echelon form with transformation matrix, pivots etc." begin | ||
for n in test_sizes | ||
for rep in 1:10 | ||
gf2_matrices = [rand(Bool, size, size) for size in test_sizes] | ||
for (i, mat) in enumerate(gf2_matrices) | ||
naive_echelon_form, _, transformation, _ = gf2_row_echelon_with_pivots!(Matrix{Int}(mat), full=true) # in-place | ||
# Check the correctness of the transformation matrix | ||
@test (transformation*mat) .%2 == naive_echelon_form | ||
# Check the correctness of Gaussian elimination | ||
@test naive_echelon_form == gf2_gausselim!(mat) | ||
# Consistency check with Nemo.jl's echelon_form | ||
nemo_mat = matrix(GF(2), Matrix{Int}(mat)) | ||
@test echelon_form(nemo_mat) == matrix(GF(2), naive_echelon_form) | ||
end | ||
end | ||
end | ||
end | ||
|
||
function is_in_nullspace(A, x) | ||
# Ensure x is the correct orientation | ||
if size(x, 1) != size(A, 2) | ||
x = transpose(x) | ||
end | ||
# Perform modulo 2 arithmetic: A * x must be zero mod 2 | ||
if size(x, 2) == 1 # x is a single column vector | ||
result = A * x | ||
return all(result .% 2 .== 0) # Check if A * x = 0 mod 2 | ||
else # x is a matrix, check each column vector | ||
for i in 1:size(x, 2) | ||
result = A * x[:, i] # Multiply A with the i-th column of x | ||
if !all(result .% 2 .== 0) # Check if A * column = 0 mod 2 | ||
return false | ||
end | ||
end | ||
return true # All columns are in the null space mod 2 | ||
end | ||
end | ||
|
||
@testset "GF(2) nullspace of the binary matrix" begin | ||
for n in test_sizes | ||
for rep in 1:10 | ||
gf2_matrices = [rand(Bool, size, size) for size in test_sizes] | ||
for (i, matrix) in enumerate(gf2_matrices) | ||
imat = Matrix{Int}(matrix) | ||
ns = gf2_nullspace(imat) | ||
@test is_in_nullspace(imat, ns) | ||
end | ||
end | ||
end | ||
end | ||
|
||
@testset "Consistency check with ldpc" begin | ||
# sanity checks for comparison to https://github.com/quantumgizmos/ldpc | ||
# results compared with 'from ldpc.mod2 import nullspace, row_basis, row_echelon' | ||
# Consistency check 1 | ||
H = [1 1 1; 1 1 1; 0 1 0] | ||
echelon_form, rank, transformation, pivots = gf2_row_echelon_with_pivots!(copy(H)) # in-place | ||
@test echelon_form == [1 1 1; 0 1 0; 0 0 0] | ||
@test rank == 2 | ||
@test transformation == [1 0 0; 0 0 1; 1 1 0] | ||
@test pivots == [1, 2] # in python, it's [0, 1] due to zero-indexing | ||
@test mod.((transformation*copy(H)), 2) == echelon_form | ||
@test gf2_nullspace(copy(H)) == [1 0 1] | ||
@test gf2_rowspace_basis(copy(H)) == [1 1 1; 0 1 0] | ||
# Consistency check 2 | ||
H = [0 0 0 1 1 1 1; | ||
0 1 1 0 0 1 1; | ||
1 0 1 0 1 0 1] | ||
echelon_form, rank, transformation, pivots = gf2_row_echelon_with_pivots!(copy(H)) # in-place | ||
@test echelon_form == [1 0 1 0 1 0 1; | ||
0 1 1 0 0 1 1; | ||
0 0 0 1 1 1 1] | ||
@test rank == 3 | ||
@test transformation == [0 0 1; | ||
0 1 0; | ||
1 0 0] | ||
@test pivots == [1, 2, 4] # in python, it's [0, 1, 3] due to zero-indexing | ||
@test mod.((transformation*copy(H)), 2) == echelon_form | ||
@test gf2_nullspace(copy(H)) == [1 1 1 0 0 0 0; | ||
0 1 1 1 1 0 0; | ||
0 1 0 1 0 1 0; | ||
0 0 1 1 0 0 1] | ||
@test gf2_rowspace_basis(copy(H)) == [0 0 0 1 1 1 1; | ||
0 1 1 0 0 1 1; | ||
1 0 1 0 1 0 1] | ||
# Consistency check 3 | ||
H = [1 1 0; 0 1 1; 1 0 1] | ||
echelon_form, rank, transformation, pivots = gf2_row_echelon_with_pivots!(copy(H)) # in-place | ||
@test echelon_form == [1 1 0; | ||
0 1 1; | ||
0 0 0] | ||
@test rank == 2 | ||
@test transformation == [1 0 0; | ||
0 1 0; | ||
1 1 1] | ||
@test pivots == [1,2 ] # in python, it's [0, 1] due to zero-indexing | ||
@test mod.((transformation*copy(H)), 2) == echelon_form | ||
@test gf2_nullspace(copy(H)) == [1 1 1] | ||
@test gf2_rowspace_basis(copy(H)) == [1 1 0; | ||
0 1 1] | ||
# Consistency check 4 | ||
H = [1 1 0; 0 1 0; 0 0 1] | ||
echelon_form, rank, transformation, pivots = gf2_row_echelon_with_pivots!(copy(H)) # in-place | ||
@test echelon_form == [1 1 0; | ||
0 1 0; | ||
0 0 1] | ||
@test rank == 3 | ||
@test transformation == [1 0 0; | ||
0 1 0; | ||
0 0 1] | ||
@test pivots == [1, 2, 3] # in python, it's [0, 1, 2] due to zero-indexing | ||
@test mod.((transformation*copy(H)), 2) == echelon_form | ||
@test gf2_nullspace(copy(H)) == [0 0 0] | ||
@test gf2_rowspace_basis(copy(H)) == [1 1 0; | ||
0 1 0; | ||
0 0 1] | ||
# Consistency check 5 | ||
H = [1 1 0; 0 1 0; 0 0 1; 0 1 1] | ||
echelon_form, rank, transformation, pivots = gf2_row_echelon_with_pivots!(copy(H)) # in-place | ||
@test echelon_form == [1 1 0; | ||
0 1 0; | ||
0 0 1; | ||
0 0 0] | ||
@test rank == 3 | ||
@test transformation == [1 0 0 0; | ||
0 1 0 0; | ||
0 0 1 0; | ||
0 1 1 1] | ||
@test pivots == [1, 2, 3] # in python, it's [0, 1, 2] due to zero-indexing | ||
@test mod.((transformation*copy(H)), 2) == echelon_form | ||
@test gf2_nullspace(copy(H)) == [0 0 0] | ||
@test gf2_rowspace_basis(copy(H)) == [1 1 0; | ||
0 1 0; | ||
0 0 1] | ||
# Consistency check 6 | ||
H = [0 0 0 1 1 1 1; | ||
0 1 1 0 0 1 1; | ||
1 0 1 0 1 0 1] | ||
echelon_form, rank, transformation, pivots = gf2_row_echelon_with_pivots!(copy(H)) # in-place | ||
@test echelon_form == [1 0 1 0 1 0 1; | ||
0 1 1 0 0 1 1; | ||
0 0 0 1 1 1 1] | ||
@test rank == 3 | ||
@test transformation == [0 0 1; | ||
0 1 0; | ||
1 0 0] | ||
@test pivots == [1, 2, 4] # in python, it's [0, 1, 3] due to zero-indexing | ||
@test mod.((transformation*copy(H)), 2) == echelon_form | ||
@test gf2_nullspace(copy(H)) == [1 1 1 0 0 0 0; | ||
0 1 1 1 1 0 0; | ||
0 1 0 1 0 1 0; | ||
0 0 1 1 0 0 1] | ||
@test gf2_rowspace_basis(copy(H)) == [0 0 0 1 1 1 1; | ||
0 1 1 0 0 1 1; | ||
1 0 1 0 1 0 1] | ||
end | ||
end |