Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add: kurtosis and skewness, Fix: piracy to piracies #175

Merged
merged 6 commits into from
Jan 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "ExponentialFamily"
uuid = "62312e5e-252a-4322-ace9-a5f4bf9b357b"
authors = ["Ismail Senoz <i.senoz@tue.nl>", "Dmitry Bagaev <d.v.bagaev@tue.nl>"]
version = "1.2.2"
version = "1.3.0"

[deps]
BayesBase = "b4ee3484-f114-42fe-b91c-797d54a0c67e"
Expand All @@ -28,7 +28,7 @@ TinyHugeNumbers = "783c9a47-75a3-44ac-a16b-f1ab7b3acf04"

[compat]
Aqua = "0.7"
BayesBase = "1.1"
BayesBase = "1.2"
Distributions = "0.25"
DomainSets = "0.5.2, 0.6, 0.7"
FastCholesky = "1.0"
Expand Down
16 changes: 9 additions & 7 deletions src/distributions/gamma_family/gamma_shape_rate.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,13 +26,15 @@

Distributions.@distr_support GammaShapeRate 0 Inf

BayesBase.support(dist::GammaShapeRate) = Distributions.RealInterval(minimum(dist), maximum(dist))
BayesBase.shape(dist::GammaShapeRate) = dist.a
BayesBase.rate(dist::GammaShapeRate) = dist.b
BayesBase.scale(dist::GammaShapeRate) = inv(dist.b)
BayesBase.mean(dist::GammaShapeRate) = shape(dist) / rate(dist)
BayesBase.var(dist::GammaShapeRate) = shape(dist) / abs2(rate(dist))
BayesBase.params(dist::GammaShapeRate) = (shape(dist), rate(dist))
BayesBase.support(dist::GammaShapeRate) = Distributions.RealInterval(minimum(dist), maximum(dist))

Check warning on line 29 in src/distributions/gamma_family/gamma_shape_rate.jl

View check run for this annotation

Codecov / codecov/patch

src/distributions/gamma_family/gamma_shape_rate.jl#L29

Added line #L29 was not covered by tests
BayesBase.shape(dist::GammaShapeRate) = dist.a
BayesBase.rate(dist::GammaShapeRate) = dist.b
BayesBase.scale(dist::GammaShapeRate) = inv(dist.b)
BayesBase.mean(dist::GammaShapeRate) = shape(dist) / rate(dist)
BayesBase.var(dist::GammaShapeRate) = shape(dist) / abs2(rate(dist))
BayesBase.params(dist::GammaShapeRate) = (shape(dist), rate(dist))
BayesBase.kurtosis(dist::GammaShapeRate) = kurtosis(convert(Gamma, dist))
BayesBase.skewness(dist::GammaShapeRate) = skewness(convert(Gamma, dist))

BayesBase.mode(d::GammaShapeRate) =
shape(d) >= 1 ? mode(Gamma(shape(d), scale(d))) : throw(error("Gamma has no mode when shape < 1"))
Expand Down
18 changes: 10 additions & 8 deletions src/distributions/normal_family/normal_mean_precision.jl
Original file line number Diff line number Diff line change
Expand Up @@ -27,15 +27,17 @@

BayesBase.weightedmean(dist::NormalMeanPrecision) = precision(dist) * mean(dist)

BayesBase.mean(dist::NormalMeanPrecision) = dist.μ
BayesBase.median(dist::NormalMeanPrecision) = mean(dist)
BayesBase.mode(dist::NormalMeanPrecision) = mean(dist)
BayesBase.var(dist::NormalMeanPrecision) = inv(dist.w)
BayesBase.std(dist::NormalMeanPrecision) = sqrt(var(dist))
BayesBase.cov(dist::NormalMeanPrecision) = var(dist)
BayesBase.invcov(dist::NormalMeanPrecision) = dist.w
BayesBase.mean(dist::NormalMeanPrecision) = dist.μ
BayesBase.median(dist::NormalMeanPrecision) = mean(dist)
BayesBase.mode(dist::NormalMeanPrecision) = mean(dist)
BayesBase.var(dist::NormalMeanPrecision) = inv(dist.w)
BayesBase.std(dist::NormalMeanPrecision) = sqrt(var(dist))
BayesBase.cov(dist::NormalMeanPrecision) = var(dist)
BayesBase.invcov(dist::NormalMeanPrecision) = dist.w
BayesBase.entropy(dist::NormalMeanPrecision) = (1 + log2π - log(precision(dist))) / 2
BayesBase.params(dist::NormalMeanPrecision) = (mean(dist), precision(dist))
BayesBase.params(dist::NormalMeanPrecision) = (mean(dist), precision(dist))
BayesBase.kurtosis(dist::NormalMeanPrecision) = kurtosis(convert(Normal, dist))
BayesBase.skewness(dist::NormalMeanPrecision) = skewness(convert(Normal, dist))

Check warning on line 40 in src/distributions/normal_family/normal_mean_precision.jl

View check run for this annotation

Codecov / codecov/patch

src/distributions/normal_family/normal_mean_precision.jl#L38-L40

Added lines #L38 - L40 were not covered by tests

BayesBase.pdf(dist::NormalMeanPrecision, x::Real) = (invsqrt2π * exp(-abs2(x - mean(dist)) * precision(dist) / 2)) * sqrt(precision(dist))
BayesBase.logpdf(dist::NormalMeanPrecision, x::Real) = -(log2π - log(precision(dist)) + abs2(x - mean(dist)) * precision(dist)) / 2
Expand Down
21 changes: 12 additions & 9 deletions src/distributions/normal_family/normal_mean_variance.jl
Original file line number Diff line number Diff line change
Expand Up @@ -32,15 +32,18 @@ function BayesBase.weightedmean_invcov(dist::NormalMeanVariance)
return (xi, w)
end

BayesBase.mean(dist::NormalMeanVariance) = dist.μ
BayesBase.median(dist::NormalMeanVariance) = mean(dist)
BayesBase.mode(dist::NormalMeanVariance) = mean(dist)
BayesBase.var(dist::NormalMeanVariance) = dist.v
BayesBase.std(dist::NormalMeanVariance) = sqrt(var(dist))
BayesBase.cov(dist::NormalMeanVariance) = var(dist)
BayesBase.invcov(dist::NormalMeanVariance) = inv(cov(dist))
BayesBase.entropy(dist::NormalMeanVariance) = (1 + log2π + log(var(dist))) / 2
BayesBase.params(dist::NormalMeanVariance) = (dist.μ, dist.v)
BayesBase.mean(dist::NormalMeanVariance) = dist.μ
BayesBase.median(dist::NormalMeanVariance) = mean(dist)
BayesBase.mode(dist::NormalMeanVariance) = mean(dist)
BayesBase.var(dist::NormalMeanVariance) = dist.v
BayesBase.std(dist::NormalMeanVariance) = sqrt(var(dist))
BayesBase.cov(dist::NormalMeanVariance) = var(dist)
BayesBase.invcov(dist::NormalMeanVariance) = inv(cov(dist))
BayesBase.entropy(dist::NormalMeanVariance) = (1 + log2π + log(var(dist))) / 2
BayesBase.params(dist::NormalMeanVariance) = (dist.μ, dist.v)
BayesBase.kurtosis(dist::NormalMeanVariance) = kurtosis(convert(Normal, dist))
BayesBase.skewness(dist::NormalMeanVariance) = skewness(convert(Normal, dist))

BayesBase.pdf(dist::NormalMeanVariance, x::Real) = (invsqrt2π * exp(-abs2(x - mean(dist)) / 2cov(dist))) / std(dist)
BayesBase.logpdf(dist::NormalMeanVariance, x::Real) = -(log2π + log(var(dist)) + abs2(x - mean(dist)) / var(dist)) / 2

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,8 @@
BayesBase.invcov(dist::NormalWeightedMeanPrecision) = dist.w
BayesBase.entropy(dist::NormalWeightedMeanPrecision) = (1 + log2π - log(precision(dist))) / 2
BayesBase.params(dist::NormalWeightedMeanPrecision) = (weightedmean(dist), precision(dist))
BayesBase.kurtosis(dist::NormalWeightedMeanPrecision) = kurtosis(convert(Normal, dist))
BayesBase.skewness(dist::NormalWeightedMeanPrecision) = skewness(convert(Normal, dist))

Check warning on line 46 in src/distributions/normal_family/normal_weighted_mean_precision.jl

View check run for this annotation

Codecov / codecov/patch

src/distributions/normal_family/normal_weighted_mean_precision.jl#L45-L46

Added lines #L45 - L46 were not covered by tests
BayesBase.pdf(dist::NormalWeightedMeanPrecision, x::Real) = (invsqrt2π * exp(-abs2(x - mean(dist)) * precision(dist) / 2)) * sqrt(precision(dist))
BayesBase.logpdf(dist::NormalWeightedMeanPrecision, x::Real) = -(log2π - log(precision(dist)) + abs2(x - mean(dist)) * precision(dist)) / 2

Expand Down
2 changes: 2 additions & 0 deletions src/exponential_family.jl
Original file line number Diff line number Diff line change
Expand Up @@ -830,6 +830,8 @@ BayesBase.mean(ef::ExponentialFamilyDistribution{T}) where {T <: Distribution} =
BayesBase.var(ef::ExponentialFamilyDistribution{T}) where {T <: Distribution} = var(convert(T, ef))
BayesBase.std(ef::ExponentialFamilyDistribution{T}) where {T <: Distribution} = std(convert(T, ef))
BayesBase.cov(ef::ExponentialFamilyDistribution{T}) where {T <: Distribution} = cov(convert(T, ef))
BayesBase.skewness(ef::ExponentialFamilyDistribution{T}) where {T <: Distribution} = skewness(convert(T, ef))
BayesBase.kurtosis(ef::ExponentialFamilyDistribution{T}) where {T <: Distribution} = kurtosis(convert(T, ef))

BayesBase.rand(ef::ExponentialFamilyDistribution, args...) = rand(Random.default_rng(), ef, args...)
BayesBase.rand!(ef::ExponentialFamilyDistribution, args...) = rand!(Random.default_rng(), ef, args...)
Expand Down
19 changes: 18 additions & 1 deletion test/distributions/distributions_setuptests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ function test_exponentialfamily_interface(distribution;
test_fisherinformation_properties = true,
test_fisherinformation_against_hessian = true,
test_fisherinformation_against_jacobian = true,
option_assume_no_allocations = false,
option_assume_no_allocations = false
)
T = ExponentialFamily.exponential_family_typetag(distribution)

Expand Down Expand Up @@ -203,6 +203,17 @@ function run_test_basic_functions(distribution; nsamples = 10, test_gradients =
# ! do not use fixed RNG
samples = [rand(distribution) for _ in 1:nsamples]

# Not all methods are defined for all objects in Distributions.jl
# For this methods we first test if the method is defined for the distribution
# And only then we test the method for the exponential family form
potentially_missing_methods = (
cov,
skewness,
kurtosis
)

argument_type = Tuple{typeof(distribution)}

for x in samples
# We believe in the implementation in the `Distributions.jl`
@test @inferred(logpdf(ef, x)) ≈ logpdf(distribution, x)
Expand All @@ -214,6 +225,12 @@ function run_test_basic_functions(distribution; nsamples = 10, test_gradients =
@test all(rand(StableRNG(42), ef, 10) .≈ rand(StableRNG(42), distribution, 10))
@test all(rand!(StableRNG(42), ef, [deepcopy(x) for _ in 1:10]) .≈ rand!(StableRNG(42), distribution, [deepcopy(x) for _ in 1:10]))

for method in potentially_missing_methods
if hasmethod(method, argument_type)
@test @inferred(method(ef)) ≈ method(distribution)
end
end

@test @inferred(isbasemeasureconstant(ef)) === isbasemeasureconstant(T)
@test @inferred(basemeasure(ef, x)) == getbasemeasure(T, conditioner)(x)
@test all(@inferred(sufficientstatistics(ef, x)) .== map(f -> f(x), getsufficientstatistics(T, conditioner)))
Expand Down
2 changes: 1 addition & 1 deletion test/distributions/gamma_inverse_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ end
@testitem "GammaInverse: ExponentialFamilyDistribution" begin
include("distributions_setuptests.jl")

for α in 10rand(4), θ in 10rand(4)
for α in (10rand(4) .+ 4.0), θ in 10rand(4)
@testset let d = InverseGamma(α, θ)
ef = test_exponentialfamily_interface(d; option_assume_no_allocations = true)

Expand Down
4 changes: 2 additions & 2 deletions test/distributions/mv_normal_wishart_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ end
@testitem "MvNormalWishart: ExponentialFamilyDistribution" begin
include("distributions_setuptests.jl")

for dim in (3), invS in rand(Wishart(10, Array(Eye(dim))), 4)
for dim in (3,), invS in rand(Wishart(10, Array(Eye(dim))), 4)
ν = dim + 2
@testset let (d = MvNormalWishart(rand(dim), invS, rand(), ν))
ef = test_exponentialfamily_interface(
Expand All @@ -25,7 +25,7 @@ end
test_fisherinformation_against_jacobian = false
)

run_test_basic_functions(ef; assume_no_allocations = false, test_samples_logpdf = false)
run_test_basic_functions(d; assume_no_allocations = false, test_samples_logpdf = false)
end
end
end
Expand Down
2 changes: 1 addition & 1 deletion test/distributions/pareto_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
@testitem "Pareto: ExponentialFamilyDistribution" begin
include("distributions_setuptests.jl")

for shape in (1.0, 2.0, 3.0), scale in (0.25, 0.5, 2.0)
for shape in (5.0, 6.0, 7.0), scale in (0.25, 0.5, 2.0)
@testset let d = Pareto(shape, scale)
ef = test_exponentialfamily_interface(d; option_assume_no_allocations = false)
η1 = -shape - 1
Expand Down
Loading