Unsupervised learning for DAta VAlidation.
Choose option A or B to start the Udava service on your computer.
docker build -t udava -f Dockerfile .
docker run -p 5000:5000 -it -v $(pwd)/assets:/usr/Udava/assets -v $(pwd)/.dvc:/usr/Udava/.dvc udava
You can install the required modules by creating a
virtual environment and install the requirements.txt
-file (run these commands
from the main folder):
mkdir venv
python3 -m venv venv
source venv/bin/activate
pip3 install -r requirements.txt
Start the server by running:
python3 src/api.py
The GUI is available at http://localhost:5000/
.
Follow the instructions in the GUI to create models and upload data for inference.
The API is available at http://localhost:5000/
.
The input should look like this:
{
"param": {
"modeluid": "3a7ee233-2380-4420-9e1d-246932bdede4"
},
"scalar": {
"headers": ["time", "memory_used"],
"data": [
[1718725511, 1201184768],
[1718725514, 1201840128]
]
}
}
Explanation:
param.modeluid
: The unique identifier (UUID) of the model used.scalar.headers
: An array of strings representing the data columns (in this case,time
andmemory_used
).scalar.data
: A 2D array with each inner array representing a data point:- The first value is a Unix timestamp.
- The second value is the memory used in bytes.
The JSON can be sent to the API using curl
:
curl -X POST -H "Content-Type: application/json" -d @data.json http://locahost:5000/infer
CSV data can be sent to the API using curl
:
curl http://localhost:5000/infer -F file=@data.csv -F model_id=151d2394-7654-4958-9e82-174c7198368c
Make sure that the CSV contains the same columns as the model expects.