#K-nearest neighbor algorithm (KNN) #Logistic regression
#Linear Discriminant Analysis (LDA) #Quadratic Discriminant Analysis(QDA)
#Naive Bayes #Decision Tree (CART) #Random Forest (Classification)
#Bagging #Boosting #Support Vector Machine (SVM) #Neural Network
Consider the wine quality dataset from UCI Machine Learning Respository 1. We will focus only on the data concerning white wines (and not red wines). Dichotomize the quality
variable as good
, which takes the value 1 if quality
≥ 7 and the value 0, otherwise. We will take good
as response and all the 11 physicochemical characteristics of the wines in the data as predictors. Develop a good classifier and justify your choice of that classifier.
📦Wine-Quality-Modeling
┣ 📂_freeze
┣ 📂_site // Repository Website
┣ 📂asset // Website Assets
┃ ┣ 📂css
┃ ┗ 📂img
┣ 📂src // Source Code
┃ ┣ 📂dataset
┃ ┃ ┣ 📂model
┃ ┃ ┣ 📂plot
┃ ┣ 📄analysis.qmd
┃ ┣ 📄bagging.qmd
┃ ┣ 📄boosting.qmd
┃ ┣ 📄decisionTree.qmd
┃ ┣ 📄knn.qmd
┃ ┣ 📄lda.qmd
┃ ┣ 📄logit.qmd
┃ ┣ 📄naiveBayes.qmd
┃ ┣ 📄nnet.qmd
┃ ┣ 📄qda.qmd
┃ ┣ 📄randomForest.qmd
┃ ┣ 📄summary.qmd
┃ ┣ 📄svm.qmd
┃ ┗ 📄xgboost.qmd
┣ 📄.gitignore
┣ 📄LICENSE
┣ 📄README.md
┣ 📄_quarto.yml
┗ 📄index.qmd
Footnotes
-
P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009. ↩