Tensorflow and Pytorch source code for the paper
Requires Docker
Use git to pull this repo
git clone https://github.com/SensorOrgNet/Universal_Activation_Function.git
Install CUDA 11.2 container
docker run --name UAF --gpus all -v /home/username/UAF/:/workspace -w /workspace -it nvcr.io/nvidia/cuda:11.2.0-cudnn8-devel-ubuntu20.04 bash
Install python
apt update
apt install python3-pip
Install pytorch and pytorch geometric
pip3 install tensorflow==2.7.0
Run the MLP with UAF for MNIST dataset
cd Universal_Activation_Function/tensorflow/
python3 ./mnist_UAF.py
Install CUDA 11.3 container
docker run --name UAF --gpus all -v /home/username/UAF/:/workspace -w /workspace -it nvcr.io/nvidia/cuda:11.3.0-cudnn8-devel-ubuntu20.04 bash
Install python
apt update
apt install python3-pip
Install pytorch and pytorch geometric
pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
pip3 install torch-scatter -f https://data.pyg.org/whl/torch-1.10.0+cu113.html
pip3 install torch-sparse -f https://data.pyg.org/whl/torch-1.10.0+cu113.html
pip3 install torch-cluster -f https://data.pyg.org/whl/torch-1.10.0+cu113.html
pip3 install torch-spline-conv -f https://data.pyg.org/whl/torch-1.10.0+cu113.html
pip3 install torch-geometric
Run the CNN with UAF for MNIST dataset
cd Universal_Activation_Function/pytorch/
python3 ./mnist_UAF.py
Run the GCN2 with UAF for CORA dataset. The fold number is represented by the number at the end
cd Universal_Activation_Function/pytorch/
python3 ./gcn2_cora_UAF.py 0
Run the PNA with UAF for ZNC dataset. The fold number is represented by the number at the end
cd Universal_Activation_Function/pytorch/
python3 ./pna_UAF.py 0