Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Refactor Python examples with a new "util.py" file #347

Merged
merged 3 commits into from
Aug 14, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 1 addition & 26 deletions examples/python/estimate_nonconvex_eigenvalue.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,7 @@
import proxsuite
import numpy as np
import scipy.sparse as spa


def generate_mixed_qp(n, seed=1, reg=-2.0):
# A function for generating sparse random convex qps in dense format

np.random.seed(seed)
n_eq = int(n / 4)
n_in = int(n / 4)
m = n_eq + n_in

P = spa.random(
n, n, density=0.075, data_rvs=np.random.randn, format="csc"
).toarray()
P = (P + P.T) / 2.0

s = max(np.absolute(np.linalg.eigvals(P)))
P += (abs(s) + 1e-02) * spa.eye(n)
P = spa.coo_matrix(P)
q = np.random.randn(n)
A = spa.random(m, n, density=0.15, data_rvs=np.random.randn, format="csc").toarray()
v = np.random.randn(n) # Fictitious solution
delta = np.random.rand(m) # To get inequality
u = A @ v
l = -1.0e20 * np.ones(m)

return P.toarray(), q, A[:n_eq, :], u[:n_eq], A[n_in:, :], u[n_in:], l[n_in:]
from util import generate_mixed_qp


# load a qp object using qp problem dimensions
Expand Down
27 changes: 1 addition & 26 deletions examples/python/init_dense_qp.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,7 @@
import proxsuite
import numpy as np
import scipy.sparse as spa


def generate_mixed_qp(n, seed=1):
# A function for generating random convex qps

np.random.seed(seed)
n_eq = int(n / 4)
n_in = int(n / 4)
m = n_eq + n_in

P = spa.random(
n, n, density=0.075, data_rvs=np.random.randn, format="csc"
).toarray()
P = (P + P.T) / 2.0

s = max(np.absolute(np.linalg.eigvals(P)))
P += (abs(s) + 1e-02) * spa.eye(n)
P = spa.coo_matrix(P)
q = np.random.randn(n)
A = spa.random(m, n, density=0.15, data_rvs=np.random.randn, format="csc").toarray()
v = np.random.randn(n) # Fictitious solution
delta = np.random.rand(m) # To get inequality
u = A @ v
l = -1.0e20 * np.ones(m)

return P.toarray(), q, A[:n_eq, :], u[:n_eq], A[n_in:, :], u[n_in:], l[n_in:]
from util import generate_mixed_qp


# load a qp object using qp problem dimensions
Expand Down
27 changes: 1 addition & 26 deletions examples/python/init_dense_qp_with_box.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,7 @@
import proxsuite
import numpy as np
import scipy.sparse as spa


def generate_mixed_qp(n, seed=1):
# A function for generating random convex qps

np.random.seed(seed)
n_eq = int(n / 4)
n_in = int(n / 4)
m = n_eq + n_in

P = spa.random(
n, n, density=0.075, data_rvs=np.random.randn, format="csc"
).toarray()
P = (P + P.T) / 2.0

s = max(np.absolute(np.linalg.eigvals(P)))
P += (abs(s) + 1e-02) * spa.eye(n)
P = spa.coo_matrix(P)
q = np.random.randn(n)
A = spa.random(m, n, density=0.15, data_rvs=np.random.randn, format="csc").toarray()
v = np.random.randn(n) # Fictitious solution
delta = np.random.rand(m) # To get inequality
u = A @ v
l = -1.0e20 * np.ones(m)

return P.toarray(), q, A[:n_eq, :], u[:n_eq], A[n_in:, :], u[n_in:], l[n_in:]
from util import generate_mixed_qp


# load a qp object using qp problem dimensions
Expand Down
27 changes: 1 addition & 26 deletions examples/python/init_dense_qp_with_other_options.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,7 @@
import proxsuite
import numpy as np
import scipy.sparse as spa


def generate_mixed_qp(n, seed=1):
# A function for generating random convex qps

np.random.seed(seed)
n_eq = int(n / 4)
n_in = int(n / 4)
m = n_eq + n_in

P = spa.random(
n, n, density=0.075, data_rvs=np.random.randn, format="csc"
).toarray()
P = (P + P.T) / 2.0

s = max(np.absolute(np.linalg.eigvals(P)))
P += (abs(s) + 1e-02) * spa.eye(n)
P = spa.coo_matrix(P)
q = np.random.randn(n)
A = spa.random(m, n, density=0.15, data_rvs=np.random.randn, format="csc").toarray()
v = np.random.randn(n) # Fictitious solution
delta = np.random.rand(m) # To get inequality
u = A @ v
l = -1.0e20 * np.ones(m)

return P.toarray(), q, A[:n_eq, :], u[:n_eq], A[n_in:, :], u[n_in:], l[n_in:]
from util import generate_mixed_qp


# load a qp object using qp problem dimensions
Expand Down
27 changes: 1 addition & 26 deletions examples/python/init_dense_qp_with_timings.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,7 @@
import proxsuite
import numpy as np
import scipy.sparse as spa


def generate_mixed_qp(n, seed=1):
# A function for generating random convex qps

np.random.seed(seed)
n_eq = int(n / 4)
n_in = int(n / 4)
m = n_eq + n_in

P = spa.random(
n, n, density=0.075, data_rvs=np.random.randn, format="csc"
).toarray()
P = (P + P.T) / 2.0

s = max(np.absolute(np.linalg.eigvals(P)))
P += (abs(s) + 1e-02) * spa.eye(n)
P = spa.coo_matrix(P)
q = np.random.randn(n)
A = spa.random(m, n, density=0.15, data_rvs=np.random.randn, format="csc").toarray()
v = np.random.randn(n) # Fictitious solution
delta = np.random.rand(m) # To get inequality
u = A @ v
l = -1.0e20 * np.ones(m)

return P.toarray(), q, A[:n_eq, :], u[:n_eq], A[n_in:, :], u[n_in:], l[n_in:]
from util import generate_mixed_qp


# load a qp object using qp problem dimensions
Expand Down
27 changes: 1 addition & 26 deletions examples/python/init_with_default_options.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,7 @@
import proxsuite
import numpy as np
import scipy.sparse as spa


def generate_mixed_qp(n, seed=1):
# A function for generating random convex qps

np.random.seed(seed)
n_eq = int(n / 4)
n_in = int(n / 4)
m = n_eq + n_in

P = spa.random(
n, n, density=0.075, data_rvs=np.random.randn, format="csc"
).toarray()
P = (P + P.T) / 2.0

s = max(np.absolute(np.linalg.eigvals(P)))
P += (abs(s) + 1e-02) * spa.eye(n)
P = spa.coo_matrix(P)
q = np.random.randn(n)
A = spa.random(m, n, density=0.15, data_rvs=np.random.randn, format="csc").toarray()
v = np.random.randn(n) # Fictitious solution
delta = np.random.rand(m) # To get inequality
u = A @ v
l = -1.0e20 * np.ones(m)

return P.toarray(), q, A[:n_eq, :], u[:n_eq], A[n_in:, :], u[n_in:], l[n_in:]
from util import generate_mixed_qp


# load a qp object using qp problem dimensions
Expand Down
29 changes: 2 additions & 27 deletions examples/python/loading_sparse_qp.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,36 +8,11 @@

import numpy as np
import scipy.sparse as spa


def generate_mixed_qp(n, seed=1):
# A function for generating random convex qps

np.random.seed(seed)
n_eq = int(n / 4)
n_in = int(n / 4)
m = n_eq + n_in

P = spa.random(
n, n, density=0.075, data_rvs=np.random.randn, format="csc"
).toarray()
P = (P + P.T) / 2.0

s = max(np.absolute(np.linalg.eigvals(P)))
P += (abs(s) + 1e-02) * spa.eye(n)
P = spa.coo_matrix(P)
q = np.random.randn(n)
A = spa.random(m, n, density=0.15, data_rvs=np.random.randn, format="csc")
v = np.random.randn(n) # Fictitious solution
delta = np.random.rand(m) # To get inequality
u = A @ v
l = -1.0e20 * np.ones(m)

return P, q, A[:n_eq, :], u[:n_eq], A[n_in:, :], u[n_in:], l[n_in:]
from util import generate_mixed_qp


# load a qp2 object using matrix masks
H, g, A, b, C, u, l = generate_mixed_qp(n)
H, g, A, b, C, u, l = generate_mixed_qp(n, True)

H_ = H != 0.0
A_ = A != 0.0
Expand Down
27 changes: 1 addition & 26 deletions examples/python/overview-simple.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,7 @@
import proxsuite
import numpy as np
import scipy.sparse as spa


def generate_mixed_qp(n, seed=1):
# A function for generating sparse random convex qps in dense format

np.random.seed(seed)
n_eq = int(n / 4)
n_in = int(n / 4)
m = n_eq + n_in

P = spa.random(
n, n, density=0.075, data_rvs=np.random.randn, format="csc"
).toarray()
P = (P + P.T) / 2.0

s = max(np.absolute(np.linalg.eigvals(P)))
P += (abs(s) + 1e-02) * spa.eye(n)
P = spa.coo_matrix(P)
q = np.random.randn(n)
A = spa.random(m, n, density=0.15, data_rvs=np.random.randn, format="csc").toarray()
v = np.random.randn(n) # Fictitious solution
delta = np.random.rand(m) # To get inequality
u = A @ v
l = -1.0e20 * np.ones(m)

return P.toarray(), q, A[:n_eq, :], u[:n_eq], A[n_in:, :], u[n_in:], l[n_in:]
from util import generate_mixed_qp


# generate a qp problem
Expand Down
27 changes: 1 addition & 26 deletions examples/python/solve_dense_qp.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,7 @@
import proxsuite
import numpy as np
import scipy.sparse as spa


def generate_mixed_qp(n, seed=1):
# A function for generating sparse random convex qps in dense format

np.random.seed(seed)
n_eq = int(n / 4)
n_in = int(n / 4)
m = n_eq + n_in

P = spa.random(
n, n, density=0.075, data_rvs=np.random.randn, format="csc"
).toarray()
P = (P + P.T) / 2.0

s = max(np.absolute(np.linalg.eigvals(P)))
P += (abs(s) + 1e-02) * spa.eye(n)
P = spa.coo_matrix(P)
q = np.random.randn(n)
A = spa.random(m, n, density=0.15, data_rvs=np.random.randn, format="csc").toarray()
v = np.random.randn(n) # Fictitious solution
delta = np.random.rand(m) # To get inequality
u = A @ v
l = -1.0e20 * np.ones(m)

return P.toarray(), q, A[:n_eq, :], u[:n_eq], A[n_in:, :], u[n_in:], l[n_in:]
from util import generate_mixed_qp


# load a qp object using qp problem dimensions
Expand Down
27 changes: 1 addition & 26 deletions examples/python/solve_dense_qp_with_setting.py
Original file line number Diff line number Diff line change
@@ -1,32 +1,7 @@
import proxsuite
import numpy as np
import scipy.sparse as spa


def generate_mixed_qp(n, seed=1):
# A function for generating sparse random convex qps in dense format

np.random.seed(seed)
n_eq = int(n / 4)
n_in = int(n / 4)
m = n_eq + n_in

P = spa.random(
n, n, density=0.075, data_rvs=np.random.randn, format="csc"
).toarray()
P = (P + P.T) / 2.0

s = max(np.absolute(np.linalg.eigvals(P)))
P += (abs(s) + 1e-02) * spa.eye(n)
P = spa.coo_matrix(P)
q = np.random.randn(n)
A = spa.random(m, n, density=0.15, data_rvs=np.random.randn, format="csc").toarray()
v = np.random.randn(n) # Fictitious solution
delta = np.random.rand(m) # To get inequality
u = A @ v
l = -1.0e20 * np.ones(m)

return P.toarray(), q, A[:n_eq, :], u[:n_eq], A[n_in:, :], u[n_in:], l[n_in:]
from util import generate_mixed_qp


# load a qp object using qp problem dimensions
Expand Down
29 changes: 2 additions & 27 deletions examples/python/solve_without_api.py
Original file line number Diff line number Diff line change
@@ -1,39 +1,14 @@
import proxsuite
import numpy as np
import scipy.sparse as spa


def generate_mixed_qp(n, seed=1):
# A function for generating sparse random convex qps in dense format

np.random.seed(seed)
n_eq = int(n / 4)
n_in = int(n / 4)
m = n_eq + n_in

P = spa.random(
n, n, density=0.075, data_rvs=np.random.randn, format="csc"
).toarray()
P = (P + P.T) / 2.0

s = max(np.absolute(np.linalg.eigvals(P)))
P += (abs(s) + 1e-02) * spa.eye(n)
P = spa.coo_matrix(P)
q = np.random.randn(n)
A = spa.random(m, n, density=0.15, data_rvs=np.random.randn, format="csc")
v = np.random.randn(n) # Fictitious solution
delta = np.random.rand(m) # To get inequality
u = A @ v
l = -1.0e20 * np.ones(m)

return P, q, A[:n_eq, :], u[:n_eq], A[n_in:, :], u[n_in:], l[n_in:]
from util import generate_mixed_qp


# load a qp object using qp problem dimensions
n = 10
n_eq = 2
n_in = 2
H, g, A, b, C, u, l = generate_mixed_qp(n)
H, g, A, b, C, u, l = generate_mixed_qp(n, True)

# solve the problem using the sparse backend
results = proxsuite.proxqp.sparse.solve(H, g, A, b, C, l, u)
Expand Down
Loading
Loading