A small list of tips & tricks I find myself needing when working with CircuitPython.
(Note: most all of these assume CircuitPython 7)
- Inputs
- Outputs
- Neopixels / Dotstars
- Audio
- USB
- USB Serial
- Networking
- Displays (LCD / OLED / E-Ink) and displayio
- I2C
- Timing
- Board Info
- Computery Tasks
- More Esoteric Tasks
- Hacks
- Python tricks
- Python info
- Host-side tasks
import board
from digitalio import DigitalInOut, Pull
button = DigitalInOut(board.D3) # defaults to input
button.pull = Pull.UP # turn on internal pull-up resistor
print(button.value) # False == pressed
Can also do:
button = DigitalInOut(board.D3)
button.switch_to_input(Pull.UP)
import board
import analogio
potknob = analogio.AnalogIn(board.A1)
position = potknob.value # ranges from 0-65535
pos = potknob.value // 256 # make 0-255 range
import touchio
import board
touch_pin = touchio.TouchIn(board.GP6)
# on Pico / RP2040, need 1M pull-down on each input
if touch_pin.value:
print("touched!")
import board
import rotaryio
encoder = rotaryio.IncrementalEncoder(board.GP0, board.GP1) # must be consecutive on Pico
print(encoder.position) # starts at zero, goes neg or pos
import board
from digitalio import DigitalInOut, Pull
from adafruit_debouncer import Debouncer
button_in = DigitalInOut(board.D3) # defaults to input
button_in.pull = Pull.UP # turn on internal pull-up resistor
button = Debouncer(button_in)
while True:
button.update()
if button.fell:
print("press!")
if button.rose:
print("release!")
import board
from digitalio import DigitalInOut, Pull
from adafruit_debouncer import Debouncer
pins = (board.GP0, board.GP1, board.GP2, board.GP3, board.GP4)
buttons = [] # will hold list of Debouncer objects
for pin in pins: # set up each pin
tmp_pin = DigitalInOut(pin) # defaults to input
tmp_pin.pull = Pull.UP # turn on internal pull-up resistor
buttons.append( Debouncer(tmp_pin) )
while True:
for i in range(len(buttons)):
buttons[i].update()
if buttons[i].fell:
print("button",i,"pressed!")
if buttons[i].rose:
print("button",i,"released!")
import board
import digitalio
ledpin = digitalio.DigitalInOut(board.D2)
ledpin.direction = digitalio.Direction.OUTPUT
ledpin.value = True
Can also do:
ledpin = digitalio.DigitalInOut(board.D2)
ledpin.switch_to_output(value=True)
Different boards have DAC on different pins
import board
import analogio
dac = analogio.AnalogOut(board.A0) # on Trinket M0 & QT Py
dac.value = 32768 # mid-point of 0-65535
import board
import pwmio
out1 = pwmio.PWMOut(board.MOSI, frequency=25000, duty_cycle=0)
out1.duty_cycle = 32768 # mid-point 0-65535 = 50 % duty-cycle
import neopixel
leds = neopixel.NeoPixel(board.NEOPIXEL, 16, brightness=0.2)
leds[0] = 0xff00ff # first LED of 16 defined
leds[0] = (255,0,255) # equivalent
leds.fill( 0x00ff00 ) # set all to green
# servo_animation_code.py -- show simple servo animation list
import time, random, board
from pwmio import PWMOut
from adafruit_motor import servo
# your servo will likely have different min_pulse & max_pulse settings
servoA = servo.Servo(PWMOut(board.RX, frequency=50), min_pulse=500, max_pulse=2250)
# the animation to play
animation = (
# (angle, time to stay at that angle)
(0, 2.0),
(90, 2.0),
(120, 2.0),
(180, 2.0)
)
ani_pos = 0 # where in list to start our animation
while True:
angle, secs = animation[ ani_pos ]
print("servo moving to", angle, secs)
servoA.angle = angle
time.sleep( secs )
ani_pos = (ani_pos + 1) % len(animation) # go to next, loop if at end
In CircuitPython 7, the rainbowio
module has a colorwheel()
function.
Unfortunately, the rainbowio
module is not available in all builds.
In CircuitPython 6, colorwheel()
is a built-in function part of _pixelbuf
or adafruit_pypixelbuf
.
The colorwheel()
function takes a single value 0-255 hue and returns an (R,G,B)
tuple
given a single 0-255 hue. It's not a full HSV_to_RGB() function but often all you need
is "hue to RGB", wher you assume saturation=255 and value=255.
It can be used with neopixel
, adafruit_dotstar
, or any place you need a (R,G,B) 3-byte tuple.
Here's one way to use it.
# CircuitPython 7 with or without rainbowio module
import time, board, neopixel
try:
from rainbowio import colorwheel
except:
def colorwheel(pos):
if pos < 0 or pos > 255: return (0, 0, 0)
if pos < 85: return (255 - pos * 3, pos * 3, 0)
if pos < 170: pos -= 85; return (0, 255 - pos * 3, pos * 3)
pos -= 170; return (pos * 3, 0, 255 - pos * 3)
led = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.4)
while True:
led.fill( colorwheel((time.monotonic()*50)%255) )
time.sleep(0.05)
# CircuitPython 6
import time
import board
import neopixel
led = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.4)
while True:
led.fill( neopixel._pixelbuf.colorwheel((time.monotonic()*50)%255) )
time.sleep(0.05)
import time, random
import board, neopixel, rainbowio
num_leds = 16
leds = neopixel.NeoPixel(board.D2, num_leds, brightness=0.4, auto_write=False )
delta_hue = 256//num_leds
speed = 10 # higher numbers = faster rainbow spinning
i=0
while True:
for l in range(len(leds)):
leds[l] = rainbowio.colorwheel( int(i*speed + l * delta_hue) % 255 )
leds.show() # only write to LEDs after updating them all
i = (i+1) % 255
time.sleep(0.05)
import time, random
import board, neopixel
num_leds = 16
leds = neopixel.NeoPixel(board.D2, num_leds, brightness=0.4, auto_write=False )
my_color = (55,200,230)
dim_by = 20 # dim amount, higher = shorter tails
pos = 0
while True:
leds[pos] = my_color
leds[0:] = [[max(i-dim_by,0) for i in l] for l in leds] # dim all by (dim_by,dim_by,dim_by)
pos = (pos+1) % num_leds # move to next position
leds.show() # only write to LEDs after updating them all
time.sleep(0.05)
In CircuitPython, there are three different techniques to output audio:
- DAC using
audioio
- PWM using
audiopwmio
- requires RC filter (at least) - I2S using
audiobusio
- requires external I2S decoder hardware
CircuitPython's support on particular microcontroller may include support for several of these ways (e.g. SAMD51 supports DAC & I2S, just one (e.g. ESP32-S2 supports only I2S) or even none (e.g. Teensy)
This uses the audiopwmio
library, only available for Raspberry Pi Pico
(or other RP2040-based boards) and NRF52840-based boards like Adafruit Feather nRF52840 Express.
On RP2040-based boards, any pin can be PWM Audio pin.
See the audiopwomio Support Matrix for details.
import time,board
from audiocore import WaveFile
from audiopwmio import PWMAudioOut as AudioOut
wave_file = open("laser2.wav", "rb")
wave = WaveFile(wave_file)
audio = AudioOut(board.TX) # must be PWM-capable pin
while True:
print("audio is playing:",audio.playing)
if not audio.playing:
audio.play(wave)
wave.sample_rate = int(wave.sample_rate * 0.90) # play 10% slower each time
time.sleep(0.1)
Note: Sometimes the audiopwmio
driver gets confused, particularly if there's other USB access,
so you may have to reset the board to get PWM audio to work again.
Note: WAV file whould be "16-bit Unsigned PCM" format. Sample rate can be up to 44.1 kHz,
and is parsed by audiocore.WaveFile
.
Note: PWM output must be filtered and converted to line-level to be usable. Use an RC circuit to accomplish this, see this twitter thread for details.
Some CircuitPython boards have one or more built-in DACs. These are on specific pins. The code is the the same as above, with just the import line changing.
import time,random,board
from audiocore import WaveFile
from audioio import AudioOut as AudioOut # only DAC
wave_file = open("laser20.wav", "rb")
wave = WaveFile(wave_file)
audio = AudioOut(board.A0) # must be DAC-capable pin, A0 on QTPy Haxpress
while True:
print("audio is playing:",audio.playing)
if not audio.playing:
audio.play(wave)
wave.sample_rate = int(wave.sample_rate * 0.90) # play 10% slower each time
time.sleep(0.1)
[tbd]
[tbd]
On ESP32-S2-based boards like FunHouse, you cannot yet play WAV files, but you can make beeps. An example is this gist: https://gist.github.com/todbot/f35bb5ceed013a277688b2ca333244d5
Convert files to appropriate WAV format (mono, 22050 Hz, 16-bit signed seem best):
sox loop.mp3 -b 16 -c 1 -r 22050 loop.wav
To get sox
on various platforms:
- Linux:
sudo apt install sox libsox-fmt-mp3
- macOS:
brew install sox
- Windows: Use installer at http://sox.sourceforge.net/
For instance, if you have multiple of the same device.
The label
can be up to 11 characters.
This goes in boot.py
not code.py
and you must powercycle board.
# this goes in boot.py not code.py!
new_name = "TRINKEYPY0"
import storage
storage.remount("/", readonly=False)
m = storage.getmount("/")
m.label = new_name
storage.remount("/", readonly=True)
def is_usb_connected():
import storage
try:
storage.remount('/', readonly=False) # attempt to mount readwrite
storage.remount('/', readonly=True) # attempt to mount readonly
except RuntimeError as e:
return True
return False
is_usb = "USB" if is_usb_connected() else "NO USB"
print("USB:", is_usb)
import os
fs_stat = os.statvfs('/')
print("Disk size in MB", fs_stat[0] * fs_stat[2] / 1024 / 1024)
print("Free space in MB", fs_stat[0] * fs_stat[3] / 1024 / 1024)
import microcontroller
microcontroller.on_next_reset(microcontroller.RunMode.BOOTLOADER)
microcontroller.reset()
print("hello there") # prints a newline
print("waiting...", end='') # does not print newline
for i in range(256): print(i, end=', ') # comma-separated numbers
while True:
print("Type something: ", end='')
my_str = input() # type and press ENTER or RETURN
print("You entered: ", my_str)
import time
import supervisor
print("Type something when you're ready")
last_time = time.monotonic()
while True:
if supervisor.runtime.serial_bytes_available:
my_str = input()
print("You entered:", my_str)
if time.monotonic() - last_time > 1: # every second, print
last_time = time.monotonic()
print(int(last_time),"waiting...")
import time, sys, supervisor
print("type charactcers")
while True:
n = supervisor.runtime.serial_bytes_available
if n > 0: # we read something!
s = sys.stdin.read(n) # actually read it in
# print both text & hex version of recv'd chars (see control chars!)
print("got:", " ".join("{:s} {:02x}".format(c,ord(c)) for c in s))
time.sleep(0.01) # do something else
class USBSerialReader:
""" Read a line from USB Serial (up to end_char), non-blocking, with optional echo """
def __init__(self):
self.s = ''
def read(self,end_char='\n', echo=True):
import sys, supervisor
n = supervisor.runtime.serial_bytes_available
if n > 0: # we got bytes!
s = sys.stdin.read(n) # actually read it in
if echo: sys.stdout.write(s) # echo back to human
self.s = self.s + s # keep building the string up
if s.endswith(end_char): # got our end_char!
rstr = self.s # save for return
self.s = '' # reset str to beginning
return rstr
return None # no end_char yet
usb_reader = USBSerialReader()
print("type something and press the end_char")
while True:
mystr = usb_reader.read() # read until newline, echo back chars
#mystr = usb_reader.read(end_char='\t', echo=False) # trigger on tab, no echo
if mystr:
print("got:",mystr)
time.sleep(0.01) # do something time critical
import wifi
networks = []
for network in wifi.radio.start_scanning_networks():
networks.append(network)
wifi.radio.stop_scanning_networks()
networks = sorted(networks, key=lambda net: net.rssi, reverse=True)
for network in networks:
print("ssid:",network.ssid, "rssi:",network.rssi)
import time
import wifi
import ipaddress
from secrets import secrets
ip_to_ping = "1.1.1.1"
wifi.radio.connect(ssid=secrets['ssid'],password=secrets['password'])
print("my IP addr:", wifi.radio.ipv4_address)
print("pinging ",ip_to_ping)
ip1 = ipaddress.ip_address(ip_to_ping)
while True:
print("ping:", wifi.radio.ping(ip1))
time.sleep(1)
import time
import wifi
import socketpool
import ssl
import adafruit_requests
from secrets import secrets
wifi.radio.connect(ssid=secrets['ssid'],password=secrets['password'])
print("my IP addr:", wifi.radio.ipv4_address)
pool = socketpool.SocketPool(wifi.radio)
session = adafruit_requests.Session(pool, ssl.create_default_context())
while True:
response = session.get("https://todbot.com/tst/randcolor.php")
data = response.json()
print("data:",data)
time.sleep(5)
It's a config file that lives next to your code.py
and is used
(invisibly) by many Adafruit WiFi libraries.
You can use it too (as in the examples above) without those libraries
It looks like this for basic WiFi connectivity:
# secrets.py
secrets = {
"ssid": "Pretty Fly for a WiFi",
"password": "donthackme123"
}
# code.py
from secrets import secrets
print("your WiFi password is:", secrets['password'])
displayio
is the native system-level driver for displays in CircuitPython. Several CircuitPython boards
(FunHouse, MagTag, PyGamer, CLUE) have displayio
-based displays and a
built-in board.DISPLAY
object that is preconfigured for that display.
Or, you can add your own I2C or SPI display.
Boards like FunHouse, MagTag, PyGamer, CLUE have built-in displays.
display.rotation
works with all displays, not just built-in ones.
import board
display = board.DISPLAY
print(display.rotation) # print current rotation
display.rotation = 0 # valid values 0,90,180,270
The adafruit_imageload
library makes it easier to load images and display them.
The images should be in paletized BMP3 format.
import board
import displayio
import adafruit_imageload
img_filename = "bg_jp200.bmp"
display = board.DISPLAY
img, pal = adafruit_imageload.load(img_filename)
group = displayio.Group()
group.append(displayio.TileGrid(img, pixel_shader=pal))
display.show(group)
CircuitPython's displayio
library works like:
- an image
Bitmap
goes inside aTileGrid
- a
TileGrid
goes inside aGroup
- a
Group
is shown on aDisplay
.
Useful for display a solid background color that can be quickly changed.
import time, board, displayio
display = board.DISPLAY # get default display (FunHouse,Pygamer,etc)
# Create a main group to hold everything and put it on the display
screen = displayio.Group()
display.show(screen)
# make background bitmap that spans the entire display, with 3 colors
background = displayio.Bitmap(display.width, display.height, 3)
# make a 3 color palette to match
mypal = displayio.Palette(3)
mypal[0] = 0x000000 # set up those four colors (black)
mypal[1] = 0x999900 # dark yellow
mypal[2] = 0x009999 # dark cyan
# Put background into main group, using palette to map palette ids to colors
screen.append(displayio.TileGrid(background, pixel_shader=mypal))
time.sleep(2)
background.fill(2) # change background to dark cyan (mypal[2])
time.sleep(2)
background.fill(1) # change background to dark yellow (mypal[1])
Can also use adafruit_display_shapes
to make this easier:
import time, board, displayio
from adafruit_display_shapes.rect import Rect
display = board.DISPLAY
screen = displayio.Group() # a main group that holds everything
display.show(screen) # add main group to display
background = Rect(0,0, display.width, display.height, fill=0x000000 ) # background color
screen.append(background)
import time, board, displayio
import adafruit_imageload
display = board.DISPLAY # get display object (built-in on some boards)
screen = displayio.Group() # main group that holds all on-screen content
display.show(screen) # add it to display
file_names = [ '/images/cat1.bmp', '/images/cat2.bmp' ] # list of filenames
screen.append(displayio.Group()) # placeholder, will be replaced w/ screen[0] below
while True:
for fname in file_names:
image, palette = adafruit_imageload.load(fname)
screen[0] = displayio.TileGrid(image, pixel_shader=palette)
time.sleep(1)
Note: images must be in palettized BMP3 format.
If you have ImageMagick installed,
you can use its convert
command to take any image format to proper BMP3 format:
convert cat1.jpg -colors 256 -type palette BMP3:cat1.bmp
To make images smaller (and load faster), reduce number of colors from 256. If your image is a monochrome (or for use with E-Ink displays like MagTag), use 2 colors. The "-dither" options are really helpful for monochrome:
convert cat.jpg -dither FloydSteinberg -colors 2 -type palette BMP3:cat.bmp
E-Ink displays are damaged if refreshed too frequently.
CircuitPython enforces this, but also provides display.time_to_refresh
,
the number of seconds you need to wait before the display can be refreshed.
One solution is to sleep a little longer than that and you'll never get the error.
Another would be to wait for time_to_refresh
to go to zero, as show below.
import time, board, displayio, terminalio
from adafruit_display_text import label
mylabel = label.Label(terminalio.FONT, text="demo", x=20,y=20,
background_color=0x000000, color=0xffffff )
display = board.DISPLAY # e.g. for MagTag
display.show(mylabel)
while True:
if display.time_to_refresh == 0:
display.refresh()
mylabel.text = str(time.monotonic())
time.sleep(0.1)
from: https://learn.adafruit.com/circuitpython-essentials/circuitpython-i2c#find-your-sensor-2985153-11
import board
i2c = board.I2C() # or busio.I2C(pin_scl,pin_sda)
while not i2c.try_lock(): pass
print("I2C addresses found:", [hex(device_address)
for device_address in i2c.scan()])
i2c.unlock()
CircuitPython defaults to 100 kHz I2C bus speed. This will work for all devices, but some devices can go faster. Common faster speeds are 200 kHz and 400 kHz.
import board
import busio
# instead of doing
# i2c = board.I2C()
i2c = busio.I2C( board.SCL, board.SDA, frequency=200_000)
# then do something with 'i2c' object as before, like:
oled = adafruit_ssd1306.SSD1306_I2C(width=128, height=32, i2c=i2c)
Generally use time.monotonic()
to get the current "uptime" of a board in fractional seconds.
So to measure the duration it takes CircuitPython to do something like:
import time
start_time = time.monotonic()
# put thing you want to measure here, like:
import neopixel
stop_time = time.monotonic()
print("elapsed time = ", stop_time - start_time)
Note that on the "small" versions of CircuitPython in the QT Py M0, Trinket M0, etc., the floating point value of seconds will become less accurate as uptime increases.
If you want something more like Arduino's millis()
function, the supervisor.ticks_ms()
function returns an integer, not a floating point value. It is more useful for sub-second
timing tasks and you can still convert it to floating-point seconds for human consumption.
import supervisor
start_msecs = supervisor.ticks_ms()
import neopixel
stop_msecs = supervisor.ticks_ms()
print("elapsed time = ", (stop_msecs - start_msecs)/1000)
from: https://learn.adafruit.com/welcome-to-circuitpython/frequently-asked-questions
import gc
print( gc.mem_free() )
from https://gist.github.com/anecdata/1c345cb2d137776d76b97a5d5678dc97
import microcontroller
import board
for pin in dir(microcontroller.pin):
if isinstance(getattr(microcontroller.pin, pin), microcontroller.Pin):
print("".join(("microcontroller.pin.", pin, "\t")), end=" ")
for alias in dir(board):
if getattr(board, alias) is getattr(microcontroller.pin, pin):
print("".join(("", "board.", alias)), end=" ")
print()
import os
print(os.uname().machine)
'Adafruit ItsyBitsy M4 Express with samd51g19'
import os
board_type = os.uname().machine
if 'QT Py M0' in board_type:
tft_clk = board.SCK
tft_mosi = board.MOSI
spi = busio.SPI(clock=tft_clk, MOSI=tft_mosi)
elif 'ItsyBitsy M4' in board_type:
tft_clk = board.SCK
tft_mosi = board.MOSI
spi = busio.SPI(clock=tft_clk, MOSI=tft_mosi)
elif 'Pico' in board_type:
tft_clk = board.GP10 # must be a SPI CLK
tft_mosi= board.GP11 # must be a SPI TX
spi = busio.SPI(clock=tft_clk, MOSI=tft_mosi)
else:
print("supported board", board_type)
name = "John"
fav_color = 0x003366
body_temp = 98.65
fav_number = 123
print("name:%s color:%06x temp:%2.1f num:%d" % (name,fav_color,body_temp,fav_number))
# 'name:John color:ff3366 temp:98.6 num:123'
(doesn't work on 'small' CircuitPythons like QTPy M0)
name = "John"
fav_color = 0x003366
body_temp = 98.65
print(f"name:{name} color:{color:06x} temp:{body_temp:2.1f} num:{fav_number:%d}")
# 'name:John color:ff3366 temp:98.6 num:123'
# my_config.py
config = {
"username": "Grogu Djarin",
"password": "ig88rules",
"secret_key": "3a3d9bfaf05835df69713c470427fe35"
}
# code.py
from my_config import config
print("secret:", config['secret_key'])
# 'secret: 3a3d9bfaf05835df69713c470427fe35'
Use microcontroller.nvm
to store persistent state across
resets or between boot.py
and code.py
, and declare that
the first byte of nvm
will be the startup_mode
.
Now if you create multiple code.py files (say) code1.py
, code2.py
, etc.
you can switch between them based on startup_mode
.
import time
import microcontroller
startup_mode = microcontroller.nvm[0]
if startup_mode == 1:
import code1 # runs code in `code1.py`
if startup_mode == 2:
import code2 # runs code in `code2.py`
# otherwise runs 'code.py`
while True:
print("main code.py")
time.sleep(1)
Note: in CircuitPyton 7+ you can use supervisor.set_next_code_file()
to change which .py file is run on startup.
This changes only what happens on reload, not hardware reset or powerup.
Using it would look like:
import supervisor
supervisor.set_next_code_file('code_awesome.py')
# and then if you want to run it now, trigger a reload
supervisor.reload()
# simple range mapper, like Arduino map()
def map_range(s, a1, a2, b1, b2):
return b1 + ((s - a1) * (b2 - b1) / (a2 - a1))
# example: map 0-0123 value to 0.0-1.0 value
val = 768
outval = map_range( val, 0,1023, 0.0,1.0 )
# outval = 0.75
The Python built-in min()
and max()
functions can be used together
to make something like Arduino's constrain()
.
# constrain a value to be 0-255
outval = min(max(val, 0), 255)
# constrain a value to be 0-255 integer
outval = int(min(max(val, 0), 255))
# constrain a value to be -1 to +1
outval = min(max(val, -1), 1)
import time
start_time = time.monotonic() # fraction seconds uptime
do_something()
elapsed_time = time.monotonic() - start_time
print("do_something took %f seconds" % elapsed_time)
Put a try
/except KeyboardInterrupt
to catch the Ctrl-C
on the inside of your main loop.
while True:
try:
print("Doing something important...")
time.sleep(0.1)
except KeyboardInterrupt:
print("Nice try, human! Not quitting.")
Also useful for graceful shutdown (turning off neopixels, say) on Ctrl-C.
import time, random
import board, neopixel, rainbowio
leds = neopixel.NeoPixel(board.NEOPIXEL, 1, brightness=0.4 )
while True:
try:
rgb = rainbowio.colorwheel(int(time.monotonic()*75) % 255)
leds.fill(rgb)
time.sleep(0.05)
except KeyboardInterrupt:
print("shutting down nicely...")
leds.fill(0)
break # gets us out of the while True
Normally, CircuitPython restarts anytime the CIRCUITPY drive is written to. This is great normally, but is frustrating if you want your code to keep running, and you want to control exactly when a restart happens.
import supervisor
supervisor.disable_autoreload()
With this, to trigger a reload, do a Ctrl-C + Ctrl-D in the REPL or reset your board.
Also works on other RP2040-based boards like QTPy RP2040. From https://gist.github.com/Neradoc/8056725be1c209475fd09ffc37c9fad4
# Copy this as 'boot.py' in your Pico's CIRCUITPY drive
# Useful in case Pico locks up (which it's done a few times on me)
import board
import time
from digitalio import DigitalInOut,Pull
led = DigitalInOut(board.LED)
led.switch_to_output()
safe = DigitalInOut(board.GP14) # <-- choose your button pin
safe.switch_to_input(Pull.UP)
def reset_on_pin():
if safe.value is False:
import microcontroller
microcontroller.on_next_reset(microcontroller.RunMode.SAFE_MODE)
microcontroller.reset()
led.value = False
for x in range(16):
reset_on_pin()
led.value = not led.value # toggle LED on/off as notice
time.sleep(0.1)
Adafruit CircuitPython 6.2.0-beta.2 on 2021-02-11; Adafruit Trinket M0 with samd21e18
>>> help("modules")
__main__ digitalio pulseio supervisor
analogio gc pwmio sys
array math random time
board microcontroller rotaryio touchio
builtins micropython rtc usb_hid
busio neopixel_write storage usb_midi
collections os struct
Plus any modules on the filesystem
(yes, semicolons are legal in Python)
# load most common libraries
import time; import board; from digitalio import DigitalInOut,Pull; import analogio; import touchio
# print out board pins and objects (like 'I2C' and 'display')
import board; dir(board)
# print out microcontroller pins (chip pins, not the same as board pins)
import microcontroller; dir(microcontroller.pin)
# release configured / built-in display
import displayio; displayio.release_displays()
# turn off auto-reload when CIRCUITPY drive is touched
import supervisor; supervisor.disable_autoreload()
# make all neopixels purple
import board; import neopixel; leds = neopixel.NeoPixel(board.D3, 8, brightness=0.2); leds.fill(0xff00ff)
These are general Python tips that may be useful in CircuitPython.
blank_array = [0] * 50 # creats 50-element list of zeros
How to get information about Python inside of CircuitPython.
import sys
print(sys.modules.keys())
# 'dict_keys([])'
import board
import neopixel
import adafruit_dotstar
print(sys.modules.keys())
prints "dict_keys(['neopixel', 'adafruit_dotstar'])"
a = 123
b = 'hello there'
my_globals = sorted(dir)
print(my_globals)
# prints "['__name__', 'a', 'b']"
if 'a' in my_globals:
print("you have a variable named 'a'!")
if 'c' in my_globals:
print("you have a variable named 'c'!")
Things you might need to do on your computer when using CircuitPython.
The below examples are for MacOS / Linux. Similar commands are used for Windows
circup
can be used to easily install and update modules
$ pip3 install --user circup
$ circup install adafruit_midi
$ circup update # updates all modules
Freshly update all modules to latest version (e.g. when going from CP 6 -> CP 7)
(This is needed because circup update
doesn't actually seem to work reliably)
circup freeze > mymodules.txt
rm -rf /Volumes/CIRCUITPY/lib/*
circup install -r mymodules.txt
And updating circup when a new version of CircuitPython comes out:
$ pip3 install --upgrade circup
To install libraries by hand from the
CircuitPython Library Bundle
or from the CircuitPython Community Bundle (which circup doesn't support), get the bundle, unzip it and then use cp -rX
.
cp -rX bundle_folder/lib/adafruit_midi /Volumes/CIRCUITPY/lib
Note: on limited-memory boards like Trinkey, Trinket, QTPy, you must use the -X
option on MacOS
to save space. You may also need to omit unused parts of some libraries (e.g. adafruit_midi/system_exclusive
is not needed if just sending MIDI notes)