This repo contains code for replicating the results in the ICLR 2023 Paper (Tiny Paper tracks): "Theta sequences as eligibility traces: A biological solution to credit assignment"
In this paper I how theta sequences (fast hippocampal play throughs of awake behaviour) enable agents to learn under a regime effectively equivalent to TD(
Credit assignment problems, for example policy evaluation in RL, often require bootstrapping prediction errors through preceding states or maintaining temporally extended memory traces; solutions which are unfavourable or implausible for biological networks of neurons. We propose theta sequences - chains of neural activity during theta oscillations in the hippocampus, thought to represent rapid playthroughs of awake behaviour - as a solution. By analysing and simulating a model for theta sequences we show they compress behaviour such that existing but short
The jupyter notebook called EligibilitySequences.ipynb replicates the paper figure. You can run it with Google colab here: