Skip to content

Commit

Permalink
[AutoBump] Merge with fixes of 852b648 (Sep 26)
Browse files Browse the repository at this point in the history
  • Loading branch information
jorickert committed Dec 13, 2024
2 parents e7cd77b + 852b648 commit 69364a9
Show file tree
Hide file tree
Showing 38 changed files with 2,886 additions and 271 deletions.
8 changes: 2 additions & 6 deletions mlir/include/mlir/Dialect/Quant/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,2 @@
add_mlir_dialect(QuantOps quant)
add_mlir_doc(QuantOps QuantDialect Dialects/ -gen-dialect-doc)

set(LLVM_TARGET_DEFINITIONS QuantDialectBytecode.td)
mlir_tablegen(QuantDialectBytecode.cpp.inc -gen-bytecode -bytecode-dialect="Quant")
add_public_tablegen_target(MLIRQuantDialectBytecodeIncGen)
add_subdirectory(IR)
add_subdirectory(Transforms)
6 changes: 6 additions & 0 deletions mlir/include/mlir/Dialect/Quant/IR/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
add_mlir_dialect(QuantOps quant)
add_mlir_doc(QuantOps QuantDialect Dialects/ -gen-dialect-doc)

set(LLVM_TARGET_DEFINITIONS QuantDialectBytecode.td)
mlir_tablegen(QuantDialectBytecode.cpp.inc -gen-bytecode -bytecode-dialect="Quant")
add_public_tablegen_target(MLIRQuantDialectBytecodeIncGen)
Original file line number Diff line number Diff line change
@@ -1,13 +1,13 @@
//===- QuantOps.h - Quantization Ops and Types ------------------*- C++ -*-===//
//===- Quant.h - Quantization Ops -------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef MLIR_DIALECT_QUANT_QUANTOPS_H_
#define MLIR_DIALECT_QUANT_QUANTOPS_H_
#ifndef MLIR_DIALECT_QUANT_IR_QUANT_H_
#define MLIR_DIALECT_QUANT_IR_QUANT_H_

#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
Expand All @@ -19,9 +19,19 @@
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "llvm/Support/MathExtras.h"

#include "mlir/Dialect/Quant/QuantOpsDialect.h.inc"
#include "mlir/Dialect/Quant/IR/QuantOpsDialect.h.inc"

namespace mlir {
namespace quant {

class QuantizedType;
class UniformQuantizedType;
class UniformQuantizedPerAxisType;

} // namespace quant
} // namespace mlir

#define GET_OP_CLASSES
#include "mlir/Dialect/Quant/QuantOps.h.inc"
#include "mlir/Dialect/Quant/IR/QuantOps.h.inc"

#endif // MLIR_DIALECT_QUANT_QUANTOPS_H_
#endif // MLIR_DIALECT_QUANT_IR_QUANT_H_
297 changes: 297 additions & 0 deletions mlir/include/mlir/Dialect/Quant/IR/QuantBase.td
Original file line number Diff line number Diff line change
@@ -0,0 +1,297 @@
//===- QuantBase.td - Quantization dialect base ------------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Quantization dialect, types, and traits.
//
//===----------------------------------------------------------------------===//

#ifndef QUANT_BASE
#define QUANT_BASE

include "mlir/IR/OpBase.td"

def Quant_Dialect : Dialect {
let name = "quant";
let description = [{
The `quant` dialect offers a framework for defining and manipulating
quantized values. Central to this framework is the `!quant.uniform` data
type, used to represent quantized values. This dialect also provides a
suite of operations to handle and convert quantized values between their
original floating-point representations and the optimized, lower bit-width
integer representations. The `quant` dialect is instrumented with
transformation passes to lower these operations into other core MLIR
dialects, while also flattening all occurrences of quantized types into
their integer counterparts.


## The `!quant.uniform` type

The quantization process establishes a relationship between two types of
values: an *expressed value* and a *stored value*. The former refers to the
floating-point representation used in an original machine learning model,
capturing the precise numerical characteristics needed for accurate
calculations. The latter is the simplified integer representation that
resides in memory after quantization. The `!quant.uniform` data type
encodes the necessary information for (lossy) round-trip conversion between
an expressed and a stored value.

The `quant.uniform` type has two variants: per-layer quantization and
per-channel (or per-axis) quantization. In per-layer quantization, the
quantization information affects an entire tensor uniformly. Conversely, in
per-channel quantization, the data type encodes the specific tensor axis
that serves as the channel and includes quantization information for each
individual channel within the tensor. Below are the specific syntactic and
semantic considerations for each modality.


### Per-layer quantization

This is the general syntax of the `!quant.uniform` type representing
per-layer quantization:

```
`!quant.uniform` `<`
storedType (`<` storageMin `:` storageMax `>`)? `:`
expressedType `,`
scale (`:` zeroPoint)?
`>`
```

The type contains the following parameters:

- `storedType`: Integer type of the value stored in memory. This type
conveys the bit width and signedness of the quantized stored value.
Signed integer types are represented as `'i' bitWidth` (e.g., `i8`),
while unsigned integer types are represented as `'u' bitWidth` (e.g.,
`u8`).

- `storageMin`, `storageMax`: Optional bounds for the stored value. If
given, they must be within the range of `storedType`. If omitted, the
entire range of `storedType` is allowed (e.g., `-128...127` for `i8` or
`0...255` for `u8`).

- `expressedType`: Floating-point type of the value expressed by this
quantized type (e.g., `f32`, `f80`, `bf16`, or `tf32`).

- `scale`: Floating-point value of type `expressedType` used in the
conversion between stored and expressed values.

- `zeroPoint`: Optional integer value of type `storageType` used in the
conversion between stored and expressed values. If omitted, the default
is 0.

Type conversions, rounding methods, and clamping actions aside, the
relationship between the expressed and stored values as encoded in a
quantized type is denoted by the following formula:

$$
expressedValue = (storedValue ~-~ zeroPoint) ~\times~ scale
$$

Operations `quant.qcast` (quantize cast) and `quant.dcast` (dequantize
cast) can be used to quantize a floating-point value and dequantize a
stored value, respectively. See the documentation for these operations for
details on how the quantization and dequantization processes are influenced
by the `!quant.uniform` type parameters.

Here are some examples of the use of `!quant.uniform` with per-layer
quantization:

```
// An 8-bit signed integer type is used to represent a 32-bit float. No
// clamping information is provided, so the full [-128, 127] range is
// available. The scale is set to 3.0, and the zero point takes its default
// 0 value.
!quant.uniform<i8:f32, 3.0>

// A 16-bit unsigned integer type is used to represent a 32-bit float. Out
// of the 16 bits, only 10 are used, acoording to the 0..1023 clamping
// range. The type sets the scale to 1.23 and the zero point to 512.
!quant.uniform<u16<0:1023>:f32, 1.23:512>
```

### Per-channel quantization

The general syntax of the `!quant.uniform` type representing per-channel
quantization is as follows:

```
`!quant.uniform` `<`
storedType (`<` storageMin `:` storageMax `>`)? `:`
expressedType `:`
channelAxis `,`
`{`
scale0 (`:` zeroPoint0)? `,`
scale1 (`:` zeroPoint1)? ...
'}'
`>`
```

In this data type, there are multiple pairs of `scale` and `zeroPoint`
values. The `channelAxis` field represents the dimension of the containing
tensor acting as the channel. The size of the tensor along this dimension
is expected to match the number of provided `scale`-`zeroPoint` pairs, and
a given pair *i* applies to all elements in the tensor whose index along
dimension `channelAxis` is *i*. A quantized data type using per-channel
quantization is always expected to be contained within a tensor type.

Here are some examples:

```
// A 2x3x4 tensor contains 8-bit signed integers representing 32-bit
// floats. Dimension 1 of the tensor acts as the channel dimension. Its
// size 3 matches the number of provided scale values. Tensor elemenets at
// positions [*][0][*], [*][1][*], and [*][2][*] use scales 3.0, 4.0, and
// 5.0, respectively.
tensor<2x3x4x!quant.uniform<i8:f32:1, {3.0, 4.0, 5.0}>>

// A 2D dynamically sized tensor contains 16-bit unsigned integers
// representing 32-bit floats. Dimension 0 of the tensor acts as the
// channel dimension. Since 2 scale and zero-point values are provided, the
// size of dimension 0 is expected to be 2 at runtime. Tensor elements
// [0][*] use scale 2.0 and zero point 10, while elements [1][*] use scale
// 3.0 and zero point 20.
tensor<?x?x!quant.uniform<u16:f32:0, {2.0:10, 3.0:20}>>
```


## Per-axis quantization integrity

When type `!quant.uniform` contains per-axis quantization information, the
rules below are enforced. These rules guarantee that the quantization
information encoded in the data type is applicable to the context in which
the quantized type is used. For efficiency, these rules are actively
enforced by the verifiers of `quant` dialect ops, but they must be
respected in any context in which the `!quant.uniform` data type is used,
such as the header of a `func.func` op, or the input of an arithmetic
operation.

- A quantized type with per-channel quantization information must be the
element type of a tensor container type, and may not occur directly as
the data type of a scalar value.

```
// Incorrect. Type !quant.uniform specifies per-channel quantization for a
// scalar type.
%result = quant.qcast %input : f32 to !quant.uniform<i8:f32:0, {1.0, 2.0}>

// Correct. Type `!quant.uniform` with per-channel quantization is wrapped
// in a `tensor` type.
%result = quant.qcast %input : tensor<2xf32> to tensor<2x!quant.uniform<i8:f32:0, {1.0, 2.0}>>
```

- If the tensor containing the `!quant.uniform` type is ranked, its rank
must be greater than the channel axis specified in the quantized type.

```
// Incorrect. The tensor rank (2) is not greater than the channel axis in
// the quantized type (3).
%result = quant.qcast %input : tensor<1x2xf32> to tensor<1x2x!quant.uniform<i8:f32:3, {1.0, 2.0}>>

// Correct. The tensor rank (2) is now greater than the channel axis (1):
%result = quant.qcast %input : tensor<1x2xf32> to tensor<1x2x!quant.uniform<i8:f32:1, {1.0, 2.0}>>
```

- If the axis dimension in the containing tensor is static, its size must
be equal to the number of scales present in the quantized type.

```
// Incorrect. The channel axis is 1, and the size of dimension 1 in the
// containing tensor is 3. However, there are 4 scale values present in the
// quantized type.
%result = quant.qcast %input : tensor<?x3xf32> to tensor<?x3x!quant.uniform<i8:f32:1, {1.0, 2.0, 3.0, 4.0}>>

// Correct. The quantized type now includes 3 scale values, matching the
// size of dimension 1 of the result tensor.
%result = quant.qcast %input : tensor<?x3xf32> to tensor<?x3x!quant.uniform<i8:f32:1, {2.0, 3.0, 4.0}>>
```
}];
let cppNamespace = "::mlir::quant";
let useDefaultTypePrinterParser = 1;
}


//===----------------------------------------------------------------------===//
// Type predicates
//===----------------------------------------------------------------------===//

class quant_ScalarOrTensorOf<Type etype> :
Type<Or<[etype.predicate, TensorOf<[etype]>.predicate]>,
"scalar or tensor of " # etype.summary>;

def quant_QuantizedType :
Type<CPred<"::llvm::isa<mlir::quant::QuantizedType>($_self)">, "quantized type">;

def quant_ScalarType :
Type<Or<[
AnySignlessInteger.predicate,
AnyFloat.predicate,
quant_QuantizedType.predicate
]>,
"signless integer, float, or quantized scalar">;

def quant_IntegerOrQuantizedType :
Type<Or<[
AnySignlessInteger.predicate,
quant_QuantizedType.predicate
]>,
"signless integer or quantized type">;

def quant_FloatScalarOrTensor :
quant_ScalarOrTensorOf<AnyFloat>;

def quant_IntegerScalarOrTensor :
quant_ScalarOrTensorOf<AnySignlessInteger>;

def quant_QuantizedScalarOrTensor :
quant_ScalarOrTensorOf<quant_QuantizedType>;

def quant_IntegerOrQuantizedScalarOrTensor :
quant_ScalarOrTensorOf<quant_IntegerOrQuantizedType>;


//===----------------------------------------------------------------------===//
// Traits
//===----------------------------------------------------------------------===//

def quant_SameScalarOrTensorShape :
PredOpTrait<
"input and result are both scalars or both tensors with matching shape",
Or<[
And<[
TypeIsPred<"input", quant_ScalarType>,
TypeIsPred<"result", quant_ScalarType>
]>,
And<[
TypeIsPred<"input", AnyUnrankedTensor>,
TypeIsPred<"result", AnyUnrankedTensor>
]>,
And<[
TypeIsPred<"input", AnyRankedTensor>,
TypeIsPred<"result", AnyRankedTensor>,
AllShapesMatch<["input", "result"]>.predicate
]>
]>
>;

def quant_IntegerAndQuantizedCombination :
PredOpTrait<
"input must be integer and result must be quantized, or vice versa",
Or<[
And<[
TypeIsPred<"input", quant_QuantizedScalarOrTensor>,
TypeIsPred<"result", quant_IntegerScalarOrTensor>
]>,
And<[
TypeIsPred<"input", quant_IntegerScalarOrTensor>,
TypeIsPred<"result", quant_QuantizedScalarOrTensor>
]>
]>
>;

#endif // QUANT_BASE
Loading

0 comments on commit 69364a9

Please sign in to comment.