Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[AutoBump] Merge with fixes of 3f79a298 (Sep 20) (57) #418

Merged
merged 4 commits into from
Dec 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
207 changes: 108 additions & 99 deletions lib/Conversion/TorchToTosa/TorchToTosa.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -105,9 +105,18 @@ class ConvertAtenBinaryOp : public OpConversionPattern<AtenOpT> {
OpConversionPattern<AtenOpT>::getTypeConverter()->convertType(
op.getType()));

auto binaryOp =
tosa::createBinaryOpAndCast<TosaOpT>(rewriter, op, outTy, lhs, rhs);
rewriter.replaceOp(op, binaryOp.getResult());
Value binaryOp;

// TOSA ArithmeticRightShiftOp has a round parameter.
if constexpr (std::is_same<AtenOpT, AtenBitwiseRightShiftTensorOp>()) {
binaryOp = rewriter.create<TosaOpT>(op->getLoc(), outTy, lhs, rhs,
/*round=*/false);
} else {
binaryOp =
tosa::createBinaryOpAndCast<TosaOpT>(rewriter, op, outTy, lhs, rhs);
}

rewriter.replaceOp(op, binaryOp);
return success();
}
};
Expand Down Expand Up @@ -354,6 +363,7 @@ class ConvertAtenCompareOp : public OpConversionPattern<AtenOpT> {
// For bitwise operators, only integer datatype legalization is supported
constexpr bool isBitwiseOp =
std::is_same<AtenOpT, AtenBitwiseAndTensorOp>() ||
std::is_same<AtenOpT, AtenBitwiseAndScalarOp>() ||
std::is_same<AtenOpT, AtenBitwiseOrTensorOp>() ||
std::is_same<AtenOpT, AtenBitwiseXorTensorOp>();
if (isa<mlir::FloatType>(lhsElemTy) && isBitwiseOp) {
Expand All @@ -375,8 +385,7 @@ class ConvertAtenCompareOp : public OpConversionPattern<AtenOpT> {
constexpr auto swapLhsRhs = (std::is_same<AtenOpT, AtenLtTensorOp>() ||
std::is_same<AtenOpT, AtenLtScalarOp>() ||
std::is_same<AtenOpT, AtenLeTensorOp>() ||
std::is_same<AtenOpT, AtenLeScalarOp>() ||
std::is_same<AtenOpT, AtenLeTensorOp>());
std::is_same<AtenOpT, AtenLeScalarOp>());

// Promote lhs and rhs dtypes for bitwise operators.
TensorType resultTy = cast<TensorType>(
Expand Down Expand Up @@ -692,39 +701,30 @@ class ConvertAtenOp : public OpConversionPattern<AtenOpT> {
ConversionPatternRewriter &rewriter) const override;
};

template <>
LogicalResult ConvertAtenOp<AtenTanhOp>::matchAndRewrite(
AtenTanhOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.getSelf();
auto selfTy = cast<TensorType>(self.getType());
if (selfTy && isa<mlir::FloatType>(selfTy.getElementType())) {
rewriter.replaceOpWithNewOp<tosa::TanhOp>(
op, getTypeConverter()->convertType(op.getType()), self);
return success();
}
// Sigmoid legalization in TOSA for quantized element-type uses specialized
// tosa.table construct.
return rewriter.notifyMatchFailure(
op, "Only floating-point datatype legalization currently supported");
}
template <typename AtenOpT, typename TosaOpT>
class ConvertAtenActivationFunctionOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value self = adaptor.getSelf();
auto selfTy = cast<TensorType>(self.getType());

if (!selfTy)
return rewriter.notifyMatchFailure(op, "Only Tensor types supported");

if (!isa<mlir::FloatType>(selfTy.getElementType()))
return rewriter.notifyMatchFailure(
op, "Only floating-point datatype legalization currently supported");

rewriter.replaceOpWithNewOp<TosaOpT>(
op, this->getTypeConverter()->convertType(op.getType()), self);

template <>
LogicalResult ConvertAtenOp<AtenSigmoidOp>::matchAndRewrite(
AtenSigmoidOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value self = adaptor.getSelf();
auto selfTy = cast<TensorType>(self.getType());
if (selfTy && isa<mlir::FloatType>(selfTy.getElementType())) {
rewriter.replaceOpWithNewOp<tosa::SigmoidOp>(
op, getTypeConverter()->convertType(op.getType()), self);
return success();
}
// Sigmoid legalization in TOSA for quantized element-type uses
// specialized tosa.table construct.
return rewriter.notifyMatchFailure(
op, "Only floating-point datatype legalization currently supported");
}
};

template <>
LogicalResult ConvertAtenOp<AtenReluOp>::matchAndRewrite(
Expand Down Expand Up @@ -1209,73 +1209,63 @@ class ConvertAtenSqueezeAllDimsOp : public ConvertAtenSqueezeOp<AtenOpT> {
}
};

template <>
LogicalResult ConvertAtenOp<AtenPowScalarOp>::matchAndRewrite(
AtenPowScalarOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {

Value exp = adaptor.getExponent();
auto expTy = dyn_cast<RankedTensorType>(exp.getType());

if (!expTy)
return rewriter.notifyMatchFailure(
op, "Only ranked tensor types supported in TOSA Pow");

if (!isa<mlir::FloatType>(expTy.getElementType()))
return rewriter.notifyMatchFailure(
op, "Only floating-point datatype legalization supported");

Value selfTensor;
Value selfScalar = op.getSelf();
if (failed(torchScalarToTosaTensor(rewriter, op, selfScalar, selfTensor,
expTy.getElementType(), {})))
return rewriter.notifyMatchFailure(
op, "Currently only scalar constants are supported for "
"conversion in TOSA Pow operation");

auto outType =
cast<TensorType>(getTypeConverter()->convertType(op.getType()));

auto powOp = tosa::createBinaryOpAndCast<tosa::PowOp>(rewriter, op, outType,
selfTensor, exp);
rewriter.replaceOp(op, powOp.getResult());

return success();
}
template <typename AtenOpT>
class ConvertAtenPowOp : public OpConversionPattern<AtenOpT> {
public:
using OpConversionPattern<AtenOpT>::OpConversionPattern;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {

template <>
LogicalResult ConvertAtenOp<AtenPowTensorScalarOp>::matchAndRewrite(
AtenPowTensorScalarOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto outType =
cast<TensorType>(this->getTypeConverter()->convertType(op.getType()));

Value self = adaptor.getSelf();
auto selfTy = cast<RankedTensorType>(self.getType());
Value selfTensor;
if constexpr (std::is_same<AtenOpT, AtenPowScalarOp>()) {
Value selfScalar = op.getSelf();
if (failed(torchScalarToTosaTensor(rewriter, op, selfScalar, selfTensor,
outType.getElementType(), {})))
return rewriter.notifyMatchFailure(
op, "Currently only scalar constants are supported for "
"conversion in TOSA PowScalar operation");
} else {
selfTensor = adaptor.getSelf();
auto selfTy = cast<RankedTensorType>(selfTensor.getType());

if (!selfTy)
return rewriter.notifyMatchFailure(
op, "Only ranked tensor types supported in TOSA Pow");
if (!selfTy)
return rewriter.notifyMatchFailure(
op, "Only ranked tensor types supported in TOSA Pow");

if (!isa<mlir::FloatType>(selfTy.getElementType()))
return rewriter.notifyMatchFailure(
op, "Only floating-point datatype legalization supported");
if (!isa<mlir::FloatType>(selfTy.getElementType()))
return rewriter.notifyMatchFailure(
op, "Only floating-point datatype legalization supported");
}

auto outType =
cast<TensorType>(getTypeConverter()->convertType(op.getType()));
Value expTensor;
if constexpr (std::is_same<AtenOpT, AtenPowTensorScalarOp>()) {
Value expScalar = op.getExponent();
if (failed(torchScalarToTosaTensor(rewriter, op, expScalar, expTensor,
outType.getElementType(), {})))
return rewriter.notifyMatchFailure(
op, "Currently only scalar constants are supported for "
"conversion in TOSA Pow operation");
} else {
expTensor = adaptor.getExponent();
auto expTy = cast<RankedTensorType>(expTensor.getType());

Value expTensor;
Value expScalar = op.getExponent();
if (failed(torchScalarToTosaTensor(rewriter, op, expScalar, expTensor,
outType.getElementType(), {})))
return rewriter.notifyMatchFailure(
op, "Currently only scalar constants are supported for "
"conversion in TOSA Pow operation");
if (!expTy)
return rewriter.notifyMatchFailure(
op, "Only ranked tensor types supported in TOSA Pow");
}

auto powOp = tosa::createBinaryOpAndCast<tosa::PowOp>(rewriter, op, outType,
self, expTensor);
rewriter.replaceOp(op, powOp.getResult());
auto powOp = tosa::createBinaryOpAndCast<tosa::PowOp>(
rewriter, op, outType, selfTensor, expTensor);
rewriter.replaceOp(op, powOp.getResult());

return success();
}
return success();
}
};

template <>
LogicalResult ConvertAtenOp<AtenPowTensorTensorOp>::matchAndRewrite(
Expand Down Expand Up @@ -6721,6 +6711,10 @@ class ConvertTorchToTosa : public ConvertTorchToTosaBase<ConvertTorchToTosa> {
INSERT_BINARY_PATTERN(AtenLogicalAndOp, tosa::LogicalAndOp)
INSERT_BINARY_PATTERN(AtenLogicalOrOp, tosa::LogicalOrOp)
INSERT_BINARY_PATTERN(AtenLogicalXorOp, tosa::LogicalXorOp)
INSERT_BINARY_PATTERN(AtenBitwiseLeftShiftTensorOp,
tosa::LogicalLeftShiftOp)
INSERT_BINARY_PATTERN(AtenBitwiseRightShiftTensorOp,
tosa::ArithmeticRightShiftOp)
#undef INSERT_BINARY_PATTERN

#define INSERT_BINARY_ADDSUB_PATTERN(AtenOp, TosaOp) \
Expand All @@ -6744,11 +6738,14 @@ class ConvertTorchToTosa : public ConvertTorchToTosaBase<ConvertTorchToTosa> {
INSERT_BINARY_COMPARE_PATTERN(AtenGtScalarOp, tosa::GreaterOp)
INSERT_BINARY_COMPARE_PATTERN(AtenLtTensorOp, tosa::GreaterOp)
INSERT_BINARY_COMPARE_PATTERN(AtenLtScalarOp, tosa::GreaterOp)
INSERT_BINARY_COMPARE_PATTERN(AtenLeTensorOp, tosa::GreaterEqualOp)
INSERT_BINARY_COMPARE_PATTERN(AtenLeScalarOp, tosa::GreaterEqualOp)
INSERT_BINARY_COMPARE_PATTERN(AtenEqTensorOp, tosa::EqualOp)
INSERT_BINARY_COMPARE_PATTERN(AtenEqScalarOp, tosa::EqualOp)
INSERT_BINARY_COMPARE_PATTERN(AtenNeTensorOp, tosa::EqualOp)
INSERT_BINARY_COMPARE_PATTERN(AtenNeScalarOp, tosa::EqualOp)
INSERT_BINARY_COMPARE_PATTERN(AtenBitwiseAndTensorOp, tosa::BitwiseAndOp)
INSERT_BINARY_COMPARE_PATTERN(AtenBitwiseAndScalarOp, tosa::BitwiseAndOp)
INSERT_BINARY_COMPARE_PATTERN(AtenBitwiseOrTensorOp, tosa::BitwiseOrOp)
INSERT_BINARY_COMPARE_PATTERN(AtenBitwiseXorTensorOp, tosa::BitwiseXorOp)
#undef INSERT_BINARY_COMPARE_PATTERN
Expand Down Expand Up @@ -6889,18 +6886,30 @@ class ConvertTorchToTosa : public ConvertTorchToTosaBase<ConvertTorchToTosa> {
INSERT_MASKED_FILL_PATTERN(AtenMaskedFillTensorOp);
#undef INSERT_MASKED_FILL_PATTERN

#define INSERT_POW_OP_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenPowOp<AtenOp>>(typeConverter, context);
INSERT_POW_OP_PATTERN(AtenPowTensorScalarOp);
INSERT_POW_OP_PATTERN(AtenPowTensorTensorOp);
INSERT_POW_OP_PATTERN(AtenPowScalarOp);
#undef INSERT_POW_OP_PATTERN

#define INSERT_ACTIVATION_FUNCTION_OP_PATTERN(AtenOp, TosaOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenActivationFunctionOp<AtenOp, TosaOp>>(typeConverter, \
context);
INSERT_ACTIVATION_FUNCTION_OP_PATTERN(AtenTanhOp, tosa::TanhOp);
INSERT_ACTIVATION_FUNCTION_OP_PATTERN(AtenSigmoidOp, tosa::SigmoidOp);
INSERT_ACTIVATION_FUNCTION_OP_PATTERN(AtenErfOp, tosa::ErfOp);
#undef INSERT_ACTIVATION_FUNCITON_OP_PATTERN

#define INSERT_ATENOP_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context);
INSERT_ATENOP_PATTERN(AtenTanhOp);
INSERT_ATENOP_PATTERN(AtenHardtanhBackwardOp);
INSERT_ATENOP_PATTERN(AtenSigmoidOp);
INSERT_ATENOP_PATTERN(AtenReluOp);
INSERT_ATENOP_PATTERN(AtenLeakyReluOp);
INSERT_ATENOP_PATTERN(AtenArgmaxOp);
INSERT_ATENOP_PATTERN(AtenPowScalarOp);
INSERT_ATENOP_PATTERN(AtenPowTensorScalarOp);
INSERT_ATENOP_PATTERN(AtenPowTensorTensorOp);
INSERT_ATENOP_PATTERN(AtenRsubScalarOp);
INSERT_ATENOP_PATTERN(AtenConvolutionOp);
INSERT_ATENOP_PATTERN(ValueTensorLiteralOp);
Expand Down
Loading
Loading