Skip to content

ahiliitb/UniTrain_final

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 

Repository files navigation

UniTrain

UniTrain is an open-source, unified platform for effortless machine learning model training, evaluation, and deployment across diverse tasks. Experience seamless experimentation and model deployment with UniTrain.

Installation instruction

Install the UniTrain module using:

pip install -i https://test.pypi.org/simple/ UniTrain==0.2.3

Install torch library using:

pip install torch

Note: You can use your local device or any online notebooks like Google Colab or Kagle for training the models, as explained below.
However, using 'Google Colab' would be preferred because of its simple user-friendly interface and the computing power that it brings with itself.

Note: For Google Colab use '!' before every command.

Training

Classification

Adding Data for Training

  • Create a 'data' folder within a 'content' folder.
  • The 'data' folder will contain three different folders named 'train', 'test', and 'eval' used for training, testing, and evaluation purposes.
  • Each of the 'train', 'test', and 'eval' folders contain data sets of different categories on which you want to use your model
  • Data folder structure 'content'->'data'->('train', 'test', 'eval')->(category1, category2, category3, .....)

Training the model

  • Run the following code to train your model and you can change the default arguments with your custom arguments
import UniTrain
from UniTrain.utils.classification import get_data_loader, train_model
from UniTrain.models.classification import ResNet9
from UniTrain.utils.classification import parse_folder
import torch

if parse_folder("/content/data/"):
  train_dataloader = get_data_loader("/content/data/", 32, True, split='train')
  test_dataloader = get_data_loader("/content/data/", 32, True, split='test')

  model = ResNet9(num_classes=6)
  model.to(torch.device('cuda'))

  train_model(model, train_dataloader, test_dataloader,
              num_epochs=10, learning_rate=1e-3, checkpoint_dir='checkpoints',logger = "training.log", device=torch.device('cuda'))

Segmentation

Adding Data for Training

  • Create a 'data' folder.
  • The 'data' folder will contain three different folders named 'train', 'test', and 'eval' used for training, testing, and evaluation purposes.
  • Each of the 'train', 'test', and 'eval' folders contain data sets of 'images' and 'masks'.
  • Data folder structure 'content'->'data'->('train', 'test', 'eval')->('images', 'masks').

Training the model

  • Run the following code to train your model and you can change the default arguments with your custom arguments
import UniTrain
from UniTrain.utils.segmentation import get_data_loader, train_model, generate_model_summary
from UniTrain.models.segmentation import UNet
from UniTrain.utils.segmentation import parse_folder
import torch
import os
import glob


if parse_folder(data_dir):    
    train_path = os.path.join(data_dir, "train")
    test_path = os.path.join(data_dir, "test")
    
    train_image_paths = glob.glob(os.path.join(train_path, "images", "*.jpg"))
    train_mask_paths = glob.glob(os.path.join(train_path, "masks", "*.png"))
    
    test_image_paths = glob.glob(os.path.join(test_path, "images", "*.jpg"))
    test_mask_paths = glob.glob(os.path.join(test_path, "masks", "*.png"))
    
    train_data_loader = get_data_loader(image_paths=train_image_paths, mask_paths=train_mask_paths, batch_size=32, shuffle=True, transform=None)
    test_data_loader = get_data_loader(image_paths=test_image_paths, mask_paths=test_mask_paths, batch_size=32, shuffle=True, transform=None)

    model = UNet(n_class=20)
    model.to(torch.device('cuda'))
    
    generate_model_summary(model=model, input_size=(3, 512, 512))
    
    train_unet( model, train_data_loader, test_data_loader, num_epochs=10, learning_rate=1e-3, checkpoint_dir='checkpoints', logger="training.log",iou=False, device=torch.device('cuda'))

DCGAN

Adding Data for Training

  • For the data create a folder 'data'->'realimages'->'images'-> Add your data here
  • No need to create fake images as it would be generated by the untrained generator

Training the model ( both discriminator and generator )

  • Run the following code to train your model and you can change the default arguments with your custom arguments
import UniTrain
from UniTrain.utils.DCGAN import parse_folder, get_data_loader, train_model
from UniTrain.models.DCGAN import disc, gen
import glob
import torch

if parse_folder('data'):
    real_image_paths = glob.glob("data/real_images/images/*.jpg")
    real_image_paths = glob.glob("data/real_images/images/*.png")
    real_image_paths = glob.glob("data/real_images/images/*.jpeg")
    
    train_dataloader = get_data_loader('data', 128 )
    discriminator_model = disc.discriminator
    generator_model = gen.generator
    train_model( discriminator_model, generator_model, train_dataloader, batch_size = 128 ,  num_epochs = 25, learning_rate = 1e-3, torch.device('cpu'),checkpoint_dir='checkpoints')

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages