Skip to content

An implementation of various tensor-based decomposition for NN & RNN parameters

License

Notifications You must be signed in to change notification settings

androstj/tensor_rnn

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tensor RNN

An implementation of various tensor-based decomposition for NN & RNN parameters

Quick Start

  1. Install python >= 3.0
  2. Install pytorch >= 3.0
  3. pip install -e . or python setup.py install

Run example scripts

  1. Go to example folder

    cd example/polymusic

  2. Go to data folder, download the pickled dataset and return.

    cd data && ./download_data.sh && cd ..

  3. Run any example script

    python run_ttgru.py

For the usage, see the code inside example/polymusic/poly_allrnn.py

Modules

Linear Layer

  • TuckerLinear
  • CPLinear
  • TTLinear

Bilinear Layer

  • CPBilinear
  • TuckerBilinear (TODO)

RNN Layer

  • StatefulCPLSTMCell
  • StatefulCPGRUCell
  • StatefulTuckerLSTMCell
  • StatefulTuckerGRUCell
  • StatefulTTLSTMCell
  • StatefulTTGRUCell

Reference

If you find this package is useful, please kindly cite:

@article{tjandra2018tensor,
  title={Tensor Decomposition for Compressing Recurrent Neural Network},
  author={Tjandra, Andros and Sakti, Sakriani and Nakamura, Satoshi},
  journal={arXiv preprint arXiv:1802.10410},
  year={2018}
}

@inproceedings{tjandra2017compressing,
  title={Compressing recurrent neural network with tensor train},
  author={Tjandra, Andros and Sakti, Sakriani and Nakamura, Satoshi},
  booktitle={Neural Networks (IJCNN), 2017 International Joint Conference on},
  pages={4451--4458},
  year={2017},
  organization={IEEE}
}

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.4%
  • Shell 0.6%