Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add RUMnet & Nested Logit tests #169

Merged
merged 7 commits into from
Oct 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions choice_learn/models/rumnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -673,7 +673,7 @@ def compute_batch_utility(
utilities[-1].append(self.u_model(_u))

# Reshape utilities: (batch_size, num_items, heterogeneity)
return tf.transpose(tf.squeeze(tf.stack(utilities, axis=0), -1))
return tf.squeeze(tf.stack(utilities, axis=1), -1)

@tf.function
def train_step(
Expand Down Expand Up @@ -720,7 +720,6 @@ def train_step(
available_items_by_choice=available_items_by_choice,
choices=choices,
)
probabilities = []

# Iterate over heterogeneities
eps_probabilities = tf.nn.softmax(all_u, axis=1)
Expand Down
169 changes: 169 additions & 0 deletions tests/unit_tests/models/test_nlogit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
"""Basic tests for the Nested Logit model."""

import numpy as np
import pytest
import tensorflow as tf

from choice_learn.data import ChoiceDataset
from choice_learn.models import NestedLogit

test_dataset = ChoiceDataset(
shared_features_by_choice=(np.array([[1, 0.3, 0.7], [0, 3.2, 1], [3.9, 2, 1], [2.9, 3.4, 1]]),),
items_features_by_choice=(
np.array(
[
[[1.1, 2.2], [2.9, 3.3], [5.3, 4.4]],
[[1.2, 5.3], [1.3, 6.2], [4.3, 4.5]],
[[2.4, 3.1], [2.4, 7.5], [3.4, 7.1]],
[[1.7, 3.3], [8.3, 4.4], [2.7, 1.2]],
]
),
),
items_features_by_choice_names=(["if1", "if2"],),
shared_features_by_choice_names=(["sf1", "sf2", "sf3"],),
available_items_by_choice=np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 0]]),
choices=[0, 1, 2, 0],
)


def test_error_nest():
"""Tests that at least 2 nests are needed."""
spec = {
"sf1": "item",
"sf2": "item",
"sf3": "item",
"if1": "constant",
"if2": "constant",
}
with pytest.raises(ValueError):
model = NestedLogit(
coefficients=spec,
items_nests=[[0, 1, 2]],
optimizer="lbfgs",
shared_gammas_over_nests=True,
)
with pytest.raises(ValueError):
model = NestedLogit(
coefficients=spec,
items_nests=[[0, 1], [2], []],
optimizer="lbfgs",
shared_gammas_over_nests=True,
)
with pytest.raises(ValueError):
model = NestedLogit(
coefficients=spec,
items_nests=[[0, 1], [2], [4]],
optimizer="lbfgs",
shared_gammas_over_nests=True,
)
with pytest.raises(ValueError):
model = NestedLogit(
coefficients=spec,
items_nests=[[0, 1], [2], [0]],
optimizer="lbfgs",
shared_gammas_over_nests=True,
)
with pytest.raises(ValueError):
model = NestedLogit(
coefficients=spec,
items_nests=[[0, 1], [2]],
optimizer="lbfgs",
shared_gammas_over_nests=True,
)
model.add_shared_coefficient(feature_name="sf1", items_indexes=[0, 1, 2])
assert True


def test_fit_adam():
"""Tests the Nested Logit fit with Adam on dummy dataset."""
global test_dataset
tf.config.run_functions_eagerly(True)

model = NestedLogit(
items_nests=[[0, 1], [2]],
optimizer="Adam",
epochs=3,
batch_size=-1,
shared_gammas_over_nests=True,
)
model.add_coefficients(feature_name="sf1", items_indexes=[0, 1, 2])
model.add_shared_coefficient(feature_name="if1", items_indexes=[1, 2])

model.instantiate(test_dataset)
nll_b = model.evaluate(test_dataset)
model.fit(test_dataset, get_report=True)
nll_a = model.evaluate(test_dataset)
assert nll_a < nll_b


def test_fit_adam_specific_specification():
"""Tests the Nested Logit fit with Adam on dummy dataset and specific specification."""
global test_dataset
tf.config.run_functions_eagerly(True)

test_dataset_2 = ChoiceDataset(
shared_features_by_choice=(
np.array([[1, 0.3, 0.7], [0, 3.2, 1], [3.9, 2, 1], [2.9, 3.4, 1]]),
),
items_features_by_choice=(
np.array(
[
[[1.1, 2.2], [2.9, 3.3], [5.3, 4.4], [5.2, 4.0]],
[[1.2, 5.3], [1.3, 6.2], [4.3, 4.5], [2.1, 8.6]],
[[2.4, 3.1], [9.4, 7.5], [3.4, 7.1], [7.3, 4.1]],
[[9.7, 3.3], [8.3, 4.4], [2.7, 1.2], [4.3, 1.2]],
]
),
),
items_features_by_choice_names=(["if1", "if2"],),
shared_features_by_choice_names=(["sf1", "sf2", "sf3"],),
available_items_by_choice=np.array(
[[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]
),
choices=[0, 1, 3, 2],
)

spec = {
"sf1": "item",
"if2": "constant",
"sf2": "item-full",
"if1": "nest",
}

model = NestedLogit(
coefficients=spec,
items_nests=[[0, 1], [2, 3]],
optimizer="sgd",
epochs=100,
lr=1e-5,
batch_size=-1,
shared_gammas_over_nests=False,
regularization="l2",
regularization_strength=1e-5,
)

model.instantiate(test_dataset_2)

spec = {
"sf1": "item",
"if2": "constant",
"sf2": "item-full",
}

model = NestedLogit(
coefficients=spec,
items_nests=[[0, 1], [2, 3]],
optimizer="sgd",
epochs=2,
lr=1e-5,
batch_size=-1,
shared_gammas_over_nests=False,
regularization="l2",
regularization_strength=1e-5,
)

model.instantiate(test_dataset_2)
nll_b = model.evaluate(test_dataset_2)
model.fit(test_dataset_2, get_report=True)
nll_a = model.evaluate(test_dataset_2)
assert nll_a < nll_b
Loading
Loading