Skip to content

Latest commit

 

History

History
87 lines (78 loc) · 3.36 KB

README.md

File metadata and controls

87 lines (78 loc) · 3.36 KB

Constrained dialogue generation

This codebase contains the code for constrained dialogue generation. We include files to run the approach as well as the public datasets we run experiments on.

Pre-process data

  • ABCD
    • Download and extract the dataset https://github.com/asappresearch/abcd/blob/master/data/abcd_v1.1.json.gz into data/ABCD
  • MultiWoz
    • Download and extract the dataset https://github.com/lexmen318/MultiWOZ-coref/blob/main/MultiWOZ2_3.zip into data/MultiWoz
    • Run the preprocessing script: cd data/MultiWoz and python preprocess_multiwoz.py --output-file multiwoz_processed.json
  • TaskMaster-3
    • Download and extract the dataset svn checkout https://github.com/google-research-datasets/Taskmaster/trunk/TM-3-2020/data into data/TaskMaster
    • Run the preprocessing script: cd data/TaskMaster and python preprocess_taskmaster.py --output-file taskmaster_processed.json

Requirements

  • Python 3.7.6 (this version is verified to run the code)
  • pip install -r requirements.txt

Fine-tune models

  • Example for ABCD
    • Train the customer model.
      • cd finetune
        python main.py --do-train --local-rank -1 --config-file configs/abcd_customer.ini
        
    • Evaluate the customer model.
      • python main.py --nodo-train --do-eval --local-rank -1 --config-file configs/abcd_customer.ini
        
    • Similarly, train and evaluate an agent model using these commands:
      • python main.py --do-train --local-rank -1 --config-file configs/abcd_agent.ini
        python main.py --nodo-train --do-eval --local-rank -1 --config-file configs/abcd_agent.ini
        

Build datastores

  • Example for ABCD
    • Create the train datastore.
      • cd datastore
        model_path="Enter path to the customer model here"
        python knn_datastore.py \
               --build-datastore \
               --model_path "${model_path}" \
               --data-path ../data/ABCD/abcd_v1.1.json \
               --output-dir ../data/ABCD/DATASTORE \
               --split train \
               --finetuned \
               --fp16
        
    • Create the test datastore.
      • model_path="Enter path to the customer model here"
        python knn_datastore.py \
               --build-datastore \
               --model_path "${model_path}" \
               --data-path ../data/ABCD/abcd_v1.1.json \
               --output-dir ../data/ABCD/DATASTORE \
               --split test \
               --finetuned \
               --fp16
        

Run approaches

  • Example for ABCD

    •   cd approaches
        model_path="Enter path to the customer model here"
        agent_model_path="Enter path to the agent model here"
        bash run_individual.sh \
             --run-approaches=wfirst,finetuned,prompt,dbs,cgmh,retrieve,windowfop \
             --MODEL-TYPE=finetuned \
             --MODEL-PATH="${model_path}" \
             --AGENT-MODEL-PATH="${agent_model_path}" \
             --config-file=../finetune/configs/abcd.ini \
             --data-dir=../data/ABCD/ \
             --save-dir=abcd_results
      
  • Get results table

    • Run the jupyter notebook in approaches/get-latex-results-table.ipynb with the appropriate result directories.
  • Plot graphs for simulated conversations

    • python plot.py --save_dir <results directory> --eval_type simulated

** You can follow a similar set of steps for the other datasets with the corresponding config files. **