Skip to content

asappresearch/constrained-dialogue-generation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Constrained dialogue generation

This codebase contains the code for constrained dialogue generation. We include files to run the approach as well as the public datasets we run experiments on.

Pre-process data

  • ABCD
    • Download and extract the dataset https://github.com/asappresearch/abcd/blob/master/data/abcd_v1.1.json.gz into data/ABCD
  • MultiWoz
    • Download and extract the dataset https://github.com/lexmen318/MultiWOZ-coref/blob/main/MultiWOZ2_3.zip into data/MultiWoz
    • Run the preprocessing script: cd data/MultiWoz and python preprocess_multiwoz.py --output-file multiwoz_processed.json
  • TaskMaster-3
    • Download and extract the dataset svn checkout https://github.com/google-research-datasets/Taskmaster/trunk/TM-3-2020/data into data/TaskMaster
    • Run the preprocessing script: cd data/TaskMaster and python preprocess_taskmaster.py --output-file taskmaster_processed.json

Requirements

  • Python 3.7.6 (this version is verified to run the code)
  • pip install -r requirements.txt

Fine-tune models

  • Example for ABCD
    • Train the customer model.
      • cd finetune
        python main.py --do-train --local-rank -1 --config-file configs/abcd_customer.ini
        
    • Evaluate the customer model.
      • python main.py --nodo-train --do-eval --local-rank -1 --config-file configs/abcd_customer.ini
        
    • Similarly, train and evaluate an agent model using these commands:
      • python main.py --do-train --local-rank -1 --config-file configs/abcd_agent.ini
        python main.py --nodo-train --do-eval --local-rank -1 --config-file configs/abcd_agent.ini
        

Build datastores

  • Example for ABCD
    • Create the train datastore.
      • cd datastore
        model_path="Enter path to the customer model here"
        python knn_datastore.py \
               --build-datastore \
               --model_path "${model_path}" \
               --data-path ../data/ABCD/abcd_v1.1.json \
               --output-dir ../data/ABCD/DATASTORE \
               --split train \
               --finetuned \
               --fp16
        
    • Create the test datastore.
      • model_path="Enter path to the customer model here"
        python knn_datastore.py \
               --build-datastore \
               --model_path "${model_path}" \
               --data-path ../data/ABCD/abcd_v1.1.json \
               --output-dir ../data/ABCD/DATASTORE \
               --split test \
               --finetuned \
               --fp16
        

Run approaches

  • Example for ABCD

    •   cd approaches
        model_path="Enter path to the customer model here"
        agent_model_path="Enter path to the agent model here"
        bash run_individual.sh \
             --run-approaches=wfirst,finetuned,prompt,dbs,cgmh,retrieve,windowfop \
             --MODEL-TYPE=finetuned \
             --MODEL-PATH="${model_path}" \
             --AGENT-MODEL-PATH="${agent_model_path}" \
             --config-file=../finetune/configs/abcd.ini \
             --data-dir=../data/ABCD/ \
             --save-dir=abcd_results
      
  • Get results table

    • Run the jupyter notebook in approaches/get-latex-results-table.ipynb with the appropriate result directories.
  • Plot graphs for simulated conversations

    • python plot.py --save_dir <results directory> --eval_type simulated

** You can follow a similar set of steps for the other datasets with the corresponding config files. **

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published