Skip to content

Commit

Permalink
Fix server warnings, update license links and readme (#602)
Browse files Browse the repository at this point in the history
  • Loading branch information
borzunov authored Jul 24, 2024
1 parent 67ca11a commit 8ad5513
Show file tree
Hide file tree
Showing 8 changed files with 45 additions and 34 deletions.
57 changes: 37 additions & 20 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,16 +8,14 @@
<br>
</p>

**Warning: Llama 3.1 support is still under construction!** the latest models require custom RoPE configuration that we do not have in Petals yet; we will update the code to fix that within a day.

Generate text with distributed **Llama (1-3)** (70B), **Falcon** (40B+), **BLOOM** (176B) (or their derivatives), and fine‑tune them for your own tasks &mdash; right from your desktop computer or Google Colab:
Generate text with distributed **Llama 3.1** (up to 405B), **Mixtral** (8x7B), **Falcon** (40B+), or **BLOOM** (176B) and fine‑tune them for your own tasks &mdash; right from your desktop computer or Google Colab:

```python
from transformers import AutoTokenizer
from petals import AutoDistributedModelForCausalLM

# Choose any model available at https://health.petals.dev
model_name = "petals-team/StableBeluga2" # This one is fine-tuned Llama 2 (70B)
model_name = "meta-llama/Meta-Llama-3.1-405B-Instruct"

# Connect to a distributed network hosting model layers
tokenizer = AutoTokenizer.from_pretrained(model_name)
Expand All @@ -33,22 +31,26 @@ print(tokenizer.decode(outputs[0])) # A cat sat on a mat...
🚀 &nbsp;<b><a href="https://colab.research.google.com/drive/1uCphNY7gfAUkdDrTx21dZZwCOUDCMPw8?usp=sharing">Try now in Colab</a></b>
</p>

🔏 **Privacy.** Your data will be processed with the help of other people in the public swarm. Learn more about privacy [here](https://github.com/bigscience-workshop/petals/wiki/Security,-privacy,-and-AI-safety). For sensitive data, you can set up a [private swarm](https://github.com/bigscience-workshop/petals/wiki/Launch-your-own-swarm) among people you trust.
🦙 **Want to run Llama?** [Request access](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) to its weights, then run `huggingface-cli login` in the terminal before loading the model. Or just try it in our [chatbot app](https://chat.petals.dev).

🦙 **Want to run Llama 2?** Request access to its weights at the ♾️ [Meta AI website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and 🤗 [Model Hub](https://huggingface.co/meta-llama/Llama-2-70b-hf), then run `huggingface-cli login` in the terminal before loading the model. Or just try it in our [chatbot app](https://chat.petals.dev).
🔏 **Privacy.** Your data will be processed with the help of other people in the public swarm. Learn more about privacy [here](https://github.com/bigscience-workshop/petals/wiki/Security,-privacy,-and-AI-safety). For sensitive data, you can set up a [private swarm](https://github.com/bigscience-workshop/petals/wiki/Launch-your-own-swarm) among people you trust.

💬 **Any questions?** Ping us in [our Discord](https://discord.gg/KdThf2bWVU)!

## Connect your GPU and increase Petals capacity

Petals is a community-run system &mdash; we rely on people sharing their GPUs. You can check out [available models](https://health.petals.dev) and help serving one of them! As an example, here is how to host a part of [Stable Beluga 2](https://huggingface.co/stabilityai/StableBeluga2) on your GPU:
Petals is a community-run system &mdash; we rely on people sharing their GPUs. You can help serving one of the [available models](https://health.petals.dev) or host a new model from 🤗 [Model Hub](https://huggingface.co/models)!

As an example, here is how to host a part of [Llama 3.1 (405B) Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) on your GPU:

🦙 **Want to host Llama?** [Request access](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) to its weights, then run `huggingface-cli login` in the terminal before loading the model.

🐧 **Linux + Anaconda.** Run these commands for NVIDIA GPUs (or follow [this](https://github.com/bigscience-workshop/petals/wiki/Running-on-AMD-GPU) for AMD):

```bash
conda install pytorch pytorch-cuda=11.7 -c pytorch -c nvidia
pip install git+https://github.com/bigscience-workshop/petals
python -m petals.cli.run_server petals-team/StableBeluga2
python -m petals.cli.run_server meta-llama/Meta-Llama-3.1-405B-Instruct
```

🪟 **Windows + WSL.** Follow [this guide](https://github.com/bigscience-workshop/petals/wiki/Run-Petals-server-on-Windows) on our Wiki.
Expand All @@ -58,27 +60,25 @@ python -m petals.cli.run_server petals-team/StableBeluga2
```bash
sudo docker run -p 31330:31330 --ipc host --gpus all --volume petals-cache:/cache --rm \
learningathome/petals:main \
python -m petals.cli.run_server --port 31330 petals-team/StableBeluga2
python -m petals.cli.run_server --port 31330 meta-llama/Meta-Llama-3.1-405B-Instruct
```

🍏 **macOS + Apple M1/M2 GPU.** Install [Homebrew](https://brew.sh/), then run these commands:

```bash
brew install python
python3 -m pip install git+https://github.com/bigscience-workshop/petals
python3 -m petals.cli.run_server petals-team/StableBeluga2
python3 -m petals.cli.run_server meta-llama/Meta-Llama-3.1-405B-Instruct
```

<p align="center">
📚 &nbsp;<b><a href="https://github.com/bigscience-workshop/petals/wiki/FAQ:-Frequently-asked-questions#running-a-server">Learn more</a></b> (how to use multiple GPUs, start the server on boot, etc.)
</p>

💬 **Any questions?** Ping us in [our Discord](https://discord.gg/X7DgtxgMhc)!

🦙 **Want to host Llama 2?** Request access to its weights at the ♾️ [Meta AI website](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) and 🤗 [Model Hub](https://huggingface.co/meta-llama/Llama-2-70b-hf), generate an 🔑 [access token](https://huggingface.co/settings/tokens), then add `--token YOUR_TOKEN_HERE` to the `python -m petals.cli.run_server` command.

🔒 **Security.** Hosting a server does not allow others to run custom code on your computer. Learn more [here](https://github.com/bigscience-workshop/petals/wiki/Security,-privacy,-and-AI-safety).

💬 **Any questions?** Ping us in [our Discord](https://discord.gg/X7DgtxgMhc)!

🏆 **Thank you!** Once you load and host 10+ blocks, we can show your name or link on the [swarm monitor](https://health.petals.dev) as a way to say thanks. You can specify them with `--public_name YOUR_NAME`.

## How does it work?
Expand Down Expand Up @@ -122,22 +122,39 @@ Please see **Section 3.3** of our [paper](https://arxiv.org/pdf/2209.01188.pdf).

Please see our [FAQ](https://github.com/bigscience-workshop/petals/wiki/FAQ:-Frequently-asked-questions#contributing) on contributing.

### 📜 Citation
### 📜 Citations

Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Max Ryabinin, Younes Belkada, Artem Chumachenko, Pavel Samygin, and Colin Raffel.
[Petals: Collaborative Inference and Fine-tuning of Large Models.](https://arxiv.org/abs/2209.01188)
_arXiv preprint arXiv:2209.01188,_ 2022.
_Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)._ 2023.

```bibtex
@article{borzunov2022petals,
@inproceedings{borzunov2023petals,
title = {Petals: Collaborative Inference and Fine-tuning of Large Models},
author = {Borzunov, Alexander and Baranchuk, Dmitry and Dettmers, Tim and Ryabinin, Max and Belkada, Younes and Chumachenko, Artem and Samygin, Pavel and Raffel, Colin},
journal = {arXiv preprint arXiv:2209.01188},
year = {2022},
author = {Borzunov, Alexander and Baranchuk, Dmitry and Dettmers, Tim and Riabinin, Maksim and Belkada, Younes and Chumachenko, Artem and Samygin, Pavel and Raffel, Colin},
booktitle = {Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
pages = {558--568},
year = {2023},
url = {https://arxiv.org/abs/2209.01188}
}
```

Alexander Borzunov, Max Ryabinin, Artem Chumachenko, Dmitry Baranchuk, Tim Dettmers, Younes Belkada, Pavel Samygin, and Colin Raffel.
[Distributed inference and fine-tuning of large language models over the Internet.](https://arxiv.org/abs/2312.08361)
_Advances in Neural Information Processing Systems_ 36 (2024).

```bibtex
@inproceedings{borzunov2023distributed,
title = {Distributed inference and fine-tuning of large language models over the {I}nternet},
author = {Borzunov, Alexander and Ryabinin, Max and Chumachenko, Artem and Baranchuk, Dmitry and Dettmers, Tim and Belkada, Younes and Samygin, Pavel and Raffel, Colin},
booktitle = {Advances in Neural Information Processing Systems},
volume = {36},
pages = {12312--12331},
year = {2023},
url = {https://arxiv.org/abs/2312.08361}
}
```

--------------------------------------------------------------------------------

<p align="center">
Expand Down
2 changes: 1 addition & 1 deletion src/petals/models/bloom/block.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

import torch
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from transformers.models.bloom.modeling_bloom import BloomBlock, BloomModel, build_alibi_tensor
from transformers.models.bloom.modeling_bloom import BloomBlock, build_alibi_tensor

from petals.utils.misc import is_dummy

Expand Down
2 changes: 1 addition & 1 deletion src/petals/models/bloom/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ class DistributedBloomConfig(BloomConfig, ClientConfig, PTuneConfig, LMHeadConfi
def from_pretrained(
cls, model_name_or_path: Union[str, os.PathLike, None], *args, dht_prefix: Optional[str] = None, **kwargs
):
logger.info("Make sure you follow the BLOOM's terms of use: https://bit.ly/bloom-license")
logger.info("Make sure you follow the BLOOM terms of use: https://bit.ly/bloom-license")

loading_from_repo = model_name_or_path is not None and not os.path.isdir(model_name_or_path)
if loading_from_repo and dht_prefix is None:
Expand Down
4 changes: 2 additions & 2 deletions src/petals/models/llama/block.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
LlamaConfig,
LlamaDecoderLayer,
LlamaMLP,
LlamaModel,
LlamaRMSNorm,
repeat_kv,
rotate_half,
Expand Down Expand Up @@ -132,7 +131,8 @@ class OptimizedLlamaDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: LlamaConfig):
nn.Module.__init__(self)
self.hidden_size = config.hidden_size
self.self_attn = OptimizedLlamaAttention(config=config)
self.self_attn = OptimizedLlamaAttention(config=config, layer_idx=0)
# layer_idx only matters for KV caching, and we re-implement it in Petals
self.mlp = LlamaMLP(config)
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
Expand Down
4 changes: 2 additions & 2 deletions src/petals/models/llama/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,8 @@ def from_pretrained(
cls, model_name_or_path: Union[str, os.PathLike, None], *args, dht_prefix: Optional[str] = None, **kwargs
):
logger.info(
"Make sure you follow the LLaMA's terms of use: "
"https://bit.ly/llama2-license for LLaMA 2, https://bit.ly/llama-license for LLaMA 1"
"Make sure you follow the Llama terms of use: "
"https://llama.meta.com/llama3/license, https://llama.meta.com/llama2/license"
)

loading_from_repo = model_name_or_path is not None and not os.path.isdir(model_name_or_path)
Expand Down
3 changes: 1 addition & 2 deletions src/petals/models/mixtral/block.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
import json
from typing import Optional, Tuple

import torch
Expand All @@ -8,7 +7,7 @@
_prepare_4d_causal_attention_mask,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from transformers.models.mixtral.modeling_mixtral import MixtralDecoderLayer, MixtralModel
from transformers.models.mixtral.modeling_mixtral import MixtralDecoderLayer


class WrappedMixtralBlock(MixtralDecoderLayer):
Expand Down
5 changes: 0 additions & 5 deletions src/petals/server/from_pretrained.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,10 +64,6 @@ def load_pretrained_block(
max_disk_space=max_disk_space,
)

# dummy load, check that keys match
report = block.load_state_dict(state_dict, strict=False)
assert not report.missing_keys, f"Some block weights are missing: {report.missing_keys}"

for param_name, _ in block.named_parameters():
assert param_name in state_dict, f"{param_name} not in state dict"
param = state_dict[param_name]
Expand All @@ -76,7 +72,6 @@ def load_pretrained_block(
set_module_tensor_to_device(block, param_name, "cpu", value=param, dtype=param.dtype)

logger.info(f"Loaded {model_name} block {block_index}")
logger.debug(f"Details: {report}")
return block


Expand Down
2 changes: 1 addition & 1 deletion src/petals/utils/peft.py
Original file line number Diff line number Diff line change
Expand Up @@ -267,7 +267,7 @@ def estimate_adapter_memory_per_block(
**load_peft_kwargs,
) -> int:
"""Get the number of extra bytes used to store a set of adapters per given block"""
with init_empty_weights(include_buffers=True):
with init_empty_weights(include_buffers=False):
block = get_model_block(block_config)
base_block_parameters = sum(p.numel() for p in block.parameters())
create_lora_adapter(block)
Expand Down

0 comments on commit 8ad5513

Please sign in to comment.