Skip to content

Commit

Permalink
Add Mixtral models (#553)
Browse files Browse the repository at this point in the history
* Add somehow workable version

* Fix generation

* Fixes

* Choose right attn

* style

* fix bloom

* remove unnes

* Update src/petals/models/mixtral/model.py

Co-authored-by: Max Ryabinin <mryabinin0@gmail.com>

* fix order of init

---------

Co-authored-by: Max Ryabinin <mryabinin0@gmail.com>
  • Loading branch information
artek0chumak and mryab authored Mar 29, 2024
1 parent 2ad0b2b commit d2fcbbc
Show file tree
Hide file tree
Showing 7 changed files with 344 additions and 2 deletions.
1 change: 1 addition & 0 deletions src/petals/models/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from petals.models.bloom import *
from petals.models.falcon import *
from petals.models.llama import *
from petals.models.mixtral import *
15 changes: 15 additions & 0 deletions src/petals/models/mixtral/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
from petals.models.mixtral.block import WrappedMixtralBlock
from petals.models.mixtral.config import DistributedMixtralConfig
from petals.models.mixtral.model import (
DistributedMixtralForCausalLM,
DistributedMixtralForSequenceClassification,
DistributedMixtralModel,
)
from petals.utils.auto_config import register_model_classes

register_model_classes(
config=DistributedMixtralConfig,
model=DistributedMixtralModel,
model_for_causal_lm=DistributedMixtralForCausalLM,
model_for_sequence_classification=DistributedMixtralForSequenceClassification,
)
114 changes: 114 additions & 0 deletions src/petals/models/mixtral/block.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
from typing import Optional, Tuple

import torch
from transformers import MixtralConfig
from transformers.cache_utils import DynamicCache
from transformers.modeling_attn_mask_utils import (
_prepare_4d_causal_attention_mask,
_prepare_4d_causal_attention_mask_for_sdpa,
)
from transformers.models.mixtral.modeling_mixtral import MixtralDecoderLayer, MixtralModel


class WrappedMixtralBlock(MixtralDecoderLayer):
def __init__(self, config: MixtralConfig, layer_idx: int):
super().__init__(config, layer_idx)

self._attn_implementation = config._attn_implementation
self.sliding_window = config.sliding_window
self.layer_idx = layer_idx

def forward(
self,
hidden_states: torch.Tensor,
*args,
attention_mask: Optional[torch.Tensor] = None,
layer_past: Optional[Tuple[torch.Tensor]] = None,
use_cache: bool = False,
**kwargs
):
batch_size, seq_length, _ = hidden_states.shape

seq_length_with_past = seq_length
past_key_values_length = 0

past_key_value = layer_past
if past_key_value is not None:
past_key_values_length = past_key_value[0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
_past_key_value = self._reorder_cache_from_bloom(past_key_value, batch_size, past_key_values_length)
past_key_value = DynamicCache()
for idx in range(self.layer_idx):
past_key_value.update(
torch.empty(_past_key_value[0].size()), torch.empty(_past_key_value[1].size()), idx
)
past_key_value.update(_past_key_value[0], _past_key_value[1], self.layer_idx)

if self._attn_implementation == "flash_attention_2":
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
elif self._attn_implementation == "sdpa":
# output_attentions=True can not be supported when using SDPA, and we fall back on
# the manual implementation that requires a 4D causal mask in all cases.
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
attention_mask,
(batch_size, seq_length),
hidden_states,
past_key_values_length,
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
hidden_states,
past_key_values_length,
sliding_window=self.sliding_window,
)

position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=hidden_states.device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)

outputs = super().forward(
hidden_states,
*args,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
use_cache=use_cache,
**kwargs
)

if use_cache:
present_key_value = outputs[-1]
present_key_value = present_key_value.to_legacy_cache()[self.layer_idx]
present_key_value = self._reorder_cache_to_bloom(present_key_value, batch_size, seq_length_with_past)
outputs = outputs[:-1] + (present_key_value,)

return outputs

def _reorder_cache_from_bloom(
self, key_value: Tuple[torch.Tensor], batch_size: int, seq_length: int
) -> Tuple[torch.Tensor]:
# TODO: Move to mixin
key_states, value_states = key_value
key_states = key_states.permute(0, 2, 1)
key_states = key_states.view(
batch_size, self.self_attn.num_key_value_heads, seq_length, self.self_attn.head_dim
)
value_states = value_states.view(*key_states.shape)
return (key_states, value_states)

def _reorder_cache_to_bloom(
self, key_value: Tuple[torch.Tensor], batch_size: int, seq_length: int
) -> Tuple[torch.Tensor]:
# TODO: Move to mixin
key_states, value_states = key_value
value_states = value_states.view(
batch_size * self.self_attn.num_key_value_heads, seq_length, self.self_attn.head_dim
)
key_states = key_states.view(*value_states.shape)
key_states = key_states.permute(0, 2, 1)
return (key_states, value_states)
36 changes: 36 additions & 0 deletions src/petals/models/mixtral/config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
import os
from typing import Optional, Union

from hivemind import get_logger
from transformers.models.mixtral import MixtralConfig
from transformers.models.mixtral.modeling_mixtral import MixtralAttention

from petals.client.config import ClientConfig
from petals.client.lm_head import LMHeadConfig
from petals.client.ptune import PTuneConfig
from petals.models.mixtral.block import WrappedMixtralBlock

logger = get_logger(__name__)


class DistributedMixtralConfig(MixtralConfig, ClientConfig, PTuneConfig, LMHeadConfig):
block_class = WrappedMixtralBlock
attn_class = MixtralAttention
block_prefix = "model.layers"

num_key_value_groups = 1

@classmethod
def from_pretrained(
cls, model_name_or_path: Union[str, os.PathLike, None], *args, dht_prefix: Optional[str] = None, **kwargs
):
loading_from_repo = model_name_or_path is not None and not os.path.isdir(model_name_or_path)
if loading_from_repo and dht_prefix is None:
dht_prefix = str(model_name_or_path)
dht_prefix = dht_prefix.replace(".", "-")
logger.info(f"Using DHT prefix: {dht_prefix}")
result = super().from_pretrained(model_name_or_path, *args, dht_prefix=dht_prefix, **kwargs)
config = result[0] if isinstance(result, tuple) else result
if config.pad_token_id is None:
config.pad_token_id = 0
return result
169 changes: 169 additions & 0 deletions src/petals/models/mixtral/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
from typing import Optional

import torch
import torch.nn as nn
from hivemind import DHT
from hivemind.utils.logging import get_logger
from transformers.modeling_outputs import MoeModelOutputWithPast
from transformers.models.mixtral import (
MixtralForCausalLM,
MixtralForSequenceClassification,
MixtralModel,
MixtralPreTrainedModel,
)

from petals.client.from_pretrained import FromPretrainedMixin
from petals.client.lm_head import LMHead
from petals.client.ptune import PTuneMixin
from petals.client.remote_generation import RemoteGenerationMixin, RemotePastKeyValues
from petals.client.remote_sequential import RemoteSequential
from petals.models.mixtral.config import DistributedMixtralConfig
from petals.utils.auto_config import DefaultRevisionMixin

logger = get_logger(__name__)


class DistributedMixtralModel(DefaultRevisionMixin, FromPretrainedMixin, PTuneMixin, MixtralModel):
"""MixtralModel, but all transformer layers are hosted by the swarm"""

_keys_to_ignore_on_load_missing = PTuneMixin._keys_to_ignore_on_load_missing
_keys_to_ignore_on_load_unexpected = [r"^model\.layers\."]

config_class = DistributedMixtralConfig

def __init__(self, config: DistributedMixtralConfig, *, dht: Optional[DHT] = None):
n_layer, config.num_hidden_layers = config.num_hidden_layers, 0 # Prevent initialization
super().__init__(config)
assert len(self.layers) == 0
config.num_hidden_layers = n_layer

self.layers = RemoteSequential(config, dht=dht)

self.requires_grad_(False) # Forbid accumulate grads for embeddings and layernorm
self.init_prompts(config)

def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[RemotePastKeyValues] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")

# The causal mask will be added on the server-side
assert (
attention_mask is None or (attention_mask == 1).all()
), f"Custom attention masks are not supported, {attention_mask=}"
assert (
position_ids is None or (position_ids[:, 1:] - position_ids[:, :-1] == 1).all()
), f"Non-consecutive position_ids are not supported, {position_ids=}"
assert head_mask is None, f"Custom head masks are not supported, {head_mask=}"
assert use_cache is None or use_cache, f"{use_cache=} is not supported"
assert not output_attentions, f"{output_attentions=} is not supported"
assert not output_hidden_states, f"{output_hidden_states=} is not supported"
assert return_dict is None or return_dict, f"{return_dict=} is not supported"
assert not output_router_logits, f"{output_router_logits=} is not supported"

if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)

use_prompts = self.config.tuning_mode and "ptune" in self.config.tuning_mode and self.h.position == 0
if use_prompts:
batch_size = inputs_embeds.shape[0]
prompts, intermediate_prompts = self.get_prompt(batch_size)
inputs_embeds = torch.cat([prompts, inputs_embeds], dim=1)
else:
prompts = intermediate_prompts = None

hidden_states = inputs_embeds
output_shape = input_shape + (hidden_states.size(-1),)

if past_key_values is None:
past_key_values = RemotePastKeyValues()
past_key_values.update_seen(hidden_states.size(1))

hidden_states = self.layers(
hidden_states,
prompts=intermediate_prompts,
hypo_ids=past_key_values.hypo_ids if past_key_values is not None else None,
)

# Remove prefix
if use_prompts:
hidden_states = hidden_states[:, self.pre_seq_len :]

# Add last hidden state
hidden_states = self.norm(hidden_states)
hidden_states = hidden_states.view(output_shape)
return MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=None,
attentions=None,
)

@property
def word_embeddings(self) -> nn.Embedding: # For compatibility with RemoteGenerationMixin
return self.embed_tokens

@property
def h(self) -> RemoteSequential: # For compatibility with RemoteGenerationMixin
return self.layers


class DistributedMixtralForCausalLM(
DefaultRevisionMixin, FromPretrainedMixin, RemoteGenerationMixin, MixtralForCausalLM
):
_keys_to_ignore_on_load_missing = DistributedMixtralModel._keys_to_ignore_on_load_missing
_keys_to_ignore_on_load_unexpected = DistributedMixtralModel._keys_to_ignore_on_load_unexpected

config_class = DistributedMixtralConfig

def __init__(self, config: DistributedMixtralConfig):
MixtralPreTrainedModel.__init__(self, config)
self.model = DistributedMixtralModel(config)
self.lm_head = LMHead(config)

# Initialize weights and apply final processing
self.post_init()

def get_output_embeddings(self):
return self.lm_head

@property
def transformer(self) -> DistributedMixtralModel: # For compatibility with RemoteGenerationMixin
return self.model


class DistributedMixtralForSequenceClassification(
DefaultRevisionMixin, FromPretrainedMixin, MixtralForSequenceClassification
):
def __init__(self, config: DistributedMixtralConfig):
MixtralPreTrainedModel.__init__(self, config)
self.num_labels = config.num_labels

self.model = DistributedMixtralModel(config)
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)

# Initialize weights and apply final processing
self.post_init()

@property
def transformer(self) -> DistributedMixtralModel: # For compatibility with RemoteGenerationMixin
return self.model
2 changes: 2 additions & 0 deletions src/petals/server/backend.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,6 +91,8 @@ def get_inference_cache_descriptors(self, batch_size: int, max_length: int) -> S
cache_tensors = []
for device, num_heads in zip(self.module.devices, self.shard_num_heads):
num_heads //= self.config.num_key_value_groups
if hasattr(self.config, "num_key_value_heads"):
num_heads = self.config.num_key_value_heads
keys = TensorDescriptor((batch_size, num_heads, head_dim, max_length), dtype=self.dtype, device=device)
values = TensorDescriptor((batch_size, num_heads, max_length, head_dim), dtype=self.dtype, device=device)
cache_tensors.extend((keys, values))
Expand Down
9 changes: 7 additions & 2 deletions src/petals/server/from_pretrained.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,10 +19,11 @@
from hivemind.utils.logging import get_logger
from huggingface_hub import get_hf_file_metadata, hf_hub_url
from huggingface_hub.utils import EntryNotFoundError
from transformers import PretrainedConfig
from transformers import PretrainedConfig, PreTrainedModel
from transformers.utils import get_file_from_repo

from petals.constants import DTYPE_MAP
from petals.models.mixtral import WrappedMixtralBlock
from petals.server.block_utils import resolve_block_dtype
from petals.utils.auto_config import AutoDistributedConfig
from petals.utils.disk_cache import DEFAULT_CACHE_DIR, allow_cache_reads, allow_cache_writes, free_disk_space_for
Expand Down Expand Up @@ -51,7 +52,11 @@ def load_pretrained_block(
torch_dtype = resolve_block_dtype(config, torch_dtype)

with init_empty_weights():
block = config.block_class(config)
if config.block_class == WrappedMixtralBlock:
config = PreTrainedModel._autoset_attn_implementation(config)
block = config.block_class(config, block_index)
else:
block = config.block_class(config)

block_prefix = f"{config.block_prefix}.{block_index}."
state_dict = _load_state_dict_from_repo(
Expand Down

0 comments on commit d2fcbbc

Please sign in to comment.