-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
43903d4
commit c3ea074
Showing
4 changed files
with
388 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,377 @@ | ||
import argparse | ||
import torch | ||
from torch import nn | ||
from torchvision import transforms | ||
import torch.nn.modules.utils as nn_utils | ||
import math | ||
import types | ||
from pathlib import Path | ||
from typing import Union, List, Tuple | ||
from PIL import Image | ||
|
||
""" | ||
Adaptation from: https://github.com/ShirAmir/dino-vit-features | ||
Updated to use Dino-v2 | ||
@article{amir2021deep, | ||
author = {Shir Amir and Yossi Gandelsman and Shai Bagon and Tali Dekel}, | ||
title = {Deep ViT Features as Dense Visual Descriptors}, | ||
journal = {arXiv preprint arXiv:2112.05814}, | ||
year = {2021} | ||
} | ||
""" | ||
|
||
class ViTExtractor: | ||
""" This class facilitates extraction of features, descriptors, and saliency maps from a ViT. | ||
We use the following notation in the documentation of the module's methods: | ||
B - batch size | ||
h - number of heads. usually takes place of the channel dimension in pytorch's convention BxCxHxW | ||
p - patch size of the ViT. either 8 or 16. | ||
t - number of tokens. equals the number of patches + 1, e.g. HW / p**2 + 1. Where H and W are the height and width | ||
of the input image. | ||
d - the embedding dimension in the ViT. | ||
""" | ||
|
||
def __init__(self, model_type: str = 'dino_vits8', stride: int = 4, model: nn.Module = None, device: str = 'cuda'): | ||
""" | ||
:param model_type: A string specifying the type of model to extract from. | ||
[dino_vits8 | dino_vits16 | dino_vitb8 | dino_vitb16 | vit_small_patch8_224 | | ||
vit_small_patch16_224 | vit_base_patch8_224 | vit_base_patch16_224] | ||
:param stride: stride of first convolution layer. small stride -> higher resolution. | ||
:param model: Optional parameter. The nn.Module to extract from instead of creating a new one in ViTExtractor. | ||
should be compatible with model_type. | ||
""" | ||
self.model_type = model_type | ||
self.device = device | ||
if model is not None: | ||
self.model = model | ||
else: | ||
self.model = ViTExtractor.create_model(model_type) | ||
|
||
self.model = ViTExtractor.patch_vit_resolution(self.model, stride=stride) | ||
self.model.eval() | ||
self.model.to(self.device) | ||
self.p = self.model.patch_embed.patch_size[0] #### | ||
self.stride = self.model.patch_embed.proj.stride | ||
|
||
self.mean = (0.485, 0.456, 0.406) if "dino" in self.model_type else (0.5, 0.5, 0.5) | ||
self.std = (0.229, 0.224, 0.225) if "dino" in self.model_type else (0.5, 0.5, 0.5) | ||
|
||
self._feats = [] | ||
self.hook_handlers = [] | ||
self.load_size = None | ||
self.num_patches = None | ||
|
||
@staticmethod | ||
def create_model(model_type: str) -> nn.Module: | ||
""" | ||
:param model_type: a string specifying which model to load. [dino_vits8 | dino_vits16 | dino_vitb8 | | ||
dino_vitb16 | vit_small_patch8_224 | vit_small_patch16_224 | vit_base_patch8_224 | | ||
vit_base_patch16_224] | ||
:return: the model | ||
""" | ||
model = torch.hub.load('facebookresearch/dinov2', model_type) | ||
return model | ||
|
||
@staticmethod | ||
def _fix_pos_enc(patch_size: int, stride_hw: Tuple[int, int]): | ||
""" | ||
Creates a method for position encoding interpolation. | ||
:param patch_size: patch size of the model. | ||
:param stride_hw: A tuple containing the new height and width stride respectively. | ||
:return: the interpolation method | ||
""" | ||
def interpolate_pos_encoding(self, x: torch.Tensor, w: int, h: int) -> torch.Tensor: | ||
npatch = x.shape[1] - 1 | ||
N = self.pos_embed.shape[1] - 1 | ||
if npatch == N and w == h: | ||
return self.pos_embed | ||
class_pos_embed = self.pos_embed[:, 0] | ||
patch_pos_embed = self.pos_embed[:, 1:] | ||
dim = x.shape[-1] | ||
# compute number of tokens taking stride into account | ||
w0 = 1 + (w - patch_size) // stride_hw[1] | ||
h0 = 1 + (h - patch_size) // stride_hw[0] | ||
assert (w0 * h0 == npatch), f"""got wrong grid size for {h}x{w} with patch_size {patch_size} and | ||
stride {stride_hw} got {h0}x{w0}={h0 * w0} expecting {npatch}""" | ||
# we add a small number to avoid floating point error in the interpolation | ||
# see discussion at https://github.com/facebookresearch/dino/issues/8 | ||
w0, h0 = w0 + 0.1, h0 + 0.1 | ||
patch_pos_embed = nn.functional.interpolate( | ||
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), | ||
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), | ||
mode='bicubic', | ||
align_corners=False, recompute_scale_factor=False | ||
) | ||
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] | ||
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | ||
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) | ||
|
||
return interpolate_pos_encoding | ||
|
||
@staticmethod | ||
def patch_vit_resolution(model: nn.Module, stride: int) -> nn.Module: | ||
""" | ||
change resolution of model output by changing the stride of the patch extraction. | ||
:param model: the model to change resolution for. | ||
:param stride: the new stride parameter. | ||
:return: the adjusted model | ||
""" | ||
patch_size = model.patch_embed.patch_size | ||
print(stride, patch_size) | ||
if stride == patch_size[0] and stride == patch_size[1]: # nothing to do | ||
return model | ||
|
||
stride = nn_utils._pair(stride) | ||
print(stride, patch_size) | ||
assert all([(patch_size[i] // stride[i]) * stride[i] == patch_size[i] for i in | ||
range(len(stride))]), f'stride {stride} should divide patch_size {patch_size}' | ||
|
||
# fix the stride | ||
model.patch_embed.proj.stride = stride | ||
# fix the positional encoding code | ||
model.interpolate_pos_encoding = types.MethodType(ViTExtractor._fix_pos_enc(patch_size, stride), model) | ||
return model | ||
|
||
def preprocess(self, image_path: Union[str, Path], | ||
load_size: Union[int, Tuple[int, int]] = None) -> Tuple[torch.Tensor, Image.Image]: | ||
""" | ||
Preprocesses an image before extraction. | ||
:param image_path: path to image to be extracted. | ||
:param load_size: optional. Size to resize image before the rest of preprocessing. | ||
:return: a tuple containing: | ||
(1) the preprocessed image as a tensor to insert the model of shape BxCxHxW. | ||
(2) the pil image in relevant dimensions | ||
""" | ||
pil_image = Image.open(image_path).convert('RGB') | ||
if load_size is not None: | ||
pil_image = transforms.Resize(load_size, interpolation=transforms.InterpolationMode.LANCZOS)(pil_image) | ||
prep = transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize(mean=self.mean, std=self.std) | ||
]) | ||
prep_img = prep(pil_image)[None, ...] | ||
return prep_img, pil_image | ||
|
||
def _get_hook(self, facet: str): | ||
""" | ||
generate a hook method for a specific block and facet. | ||
""" | ||
if facet in ['attn', 'token']: | ||
def _hook(model, input, output): | ||
self._feats.append(output) | ||
return _hook | ||
|
||
if facet == 'query': | ||
facet_idx = 0 | ||
elif facet == 'key': | ||
facet_idx = 1 | ||
elif facet == 'value': | ||
facet_idx = 2 | ||
else: | ||
raise TypeError(f"{facet} is not a supported facet.") | ||
|
||
def _inner_hook(module, input, output): | ||
input = input[0] | ||
B, N, C = input.shape | ||
qkv = module.qkv(input).reshape(B, N, 3, module.num_heads, C // module.num_heads).permute(2, 0, 3, 1, 4) | ||
self._feats.append(qkv[facet_idx]) #Bxhxtxd | ||
return _inner_hook | ||
|
||
def _register_hooks(self, layers: List[int], facet: str) -> None: | ||
""" | ||
register hook to extract features. | ||
:param layers: layers from which to extract features. | ||
:param facet: facet to extract. One of the following options: ['key' | 'query' | 'value' | 'token' | 'attn'] | ||
""" | ||
for block_idx, block in enumerate(self.model.blocks): | ||
if block_idx in layers: | ||
if facet == 'token': | ||
self.hook_handlers.append(block.register_forward_hook(self._get_hook(facet))) | ||
elif facet == 'attn': | ||
self.hook_handlers.append(block.attn.attn_drop.register_forward_hook(self._get_hook(facet))) | ||
elif facet in ['key', 'query', 'value']: | ||
self.hook_handlers.append(block.attn.register_forward_hook(self._get_hook(facet))) | ||
else: | ||
raise TypeError(f"{facet} is not a supported facet.") | ||
|
||
def _unregister_hooks(self) -> None: | ||
""" | ||
unregisters the hooks. should be called after feature extraction. | ||
""" | ||
for handle in self.hook_handlers: | ||
handle.remove() | ||
self.hook_handlers = [] | ||
|
||
def _extract_features(self, batch: torch.Tensor, layers: List[int] = 11, facet: str = 'key') -> List[torch.Tensor]: | ||
""" | ||
extract features from the model | ||
:param batch: batch to extract features for. Has shape BxCxHxW. | ||
:param layers: layer to extract. A number between 0 to 11. | ||
:param facet: facet to extract. One of the following options: ['key' | 'query' | 'value' | 'token' | 'attn'] | ||
:return : tensor of features. | ||
if facet is 'key' | 'query' | 'value' has shape Bxhxtxd | ||
if facet is 'attn' has shape Bxhxtxt | ||
if facet is 'token' has shape Bxtxd | ||
""" | ||
B, C, H, W = batch.shape | ||
self._feats = [] | ||
self._register_hooks(layers, facet) | ||
_ = self.model(batch) | ||
self._unregister_hooks() | ||
self.load_size = (H, W) | ||
self.num_patches = (1 + (H - self.p) // self.stride[0], 1 + (W - self.p) // self.stride[1]) | ||
return self._feats | ||
|
||
def _log_bin(self, x: torch.Tensor, hierarchy: int = 2) -> torch.Tensor: | ||
""" | ||
create a log-binned descriptor. | ||
:param x: tensor of features. Has shape Bxhxtxd. | ||
:param hierarchy: how many bin hierarchies to use. | ||
""" | ||
B = x.shape[0] | ||
num_bins = 1 + 8 * hierarchy | ||
|
||
bin_x = x.permute(0, 2, 3, 1).flatten(start_dim=-2, end_dim=-1) # Bx(t-1)x(dxh) | ||
bin_x = bin_x.permute(0, 2, 1) | ||
bin_x = bin_x.reshape(B, bin_x.shape[1], self.num_patches[0], self.num_patches[1]) | ||
# Bx(dxh)xnum_patches[0]xnum_patches[1] | ||
sub_desc_dim = bin_x.shape[1] | ||
|
||
avg_pools = [] | ||
# compute bins of all sizes for all spatial locations. | ||
for k in range(0, hierarchy): | ||
# avg pooling with kernel 3**kx3**k | ||
win_size = 3 ** k | ||
avg_pool = torch.nn.AvgPool2d(win_size, stride=1, padding=win_size // 2, count_include_pad=False) | ||
avg_pools.append(avg_pool(bin_x)) | ||
|
||
bin_x = torch.zeros((B, sub_desc_dim * num_bins, self.num_patches[0], self.num_patches[1])).to(self.device) | ||
for y in range(self.num_patches[0]): | ||
for x in range(self.num_patches[1]): | ||
part_idx = 0 | ||
# fill all bins for a spatial location (y, x) | ||
for k in range(0, hierarchy): | ||
kernel_size = 3 ** k | ||
for i in range(y - kernel_size, y + kernel_size + 1, kernel_size): | ||
for j in range(x - kernel_size, x + kernel_size + 1, kernel_size): | ||
if i == y and j == x and k != 0: | ||
continue | ||
if 0 <= i < self.num_patches[0] and 0 <= j < self.num_patches[1]: | ||
bin_x[:, part_idx * sub_desc_dim: (part_idx + 1) * sub_desc_dim, y, x] = avg_pools[k][ | ||
:, :, i, j] | ||
else: # handle padding in a more delicate way than zero padding | ||
temp_i = max(0, min(i, self.num_patches[0] - 1)) | ||
temp_j = max(0, min(j, self.num_patches[1] - 1)) | ||
bin_x[:, part_idx * sub_desc_dim: (part_idx + 1) * sub_desc_dim, y, x] = avg_pools[k][ | ||
:, :, temp_i, | ||
temp_j] | ||
part_idx += 1 | ||
bin_x = bin_x.flatten(start_dim=-2, end_dim=-1).permute(0, 2, 1).unsqueeze(dim=1) | ||
# Bx1x(t-1)x(dxh) | ||
return bin_x | ||
|
||
def extract_descriptors(self, batch: torch.Tensor, layer: int = 11, facet: str = 'key', | ||
bin: bool = False, include_cls: bool = False) -> torch.Tensor: | ||
""" | ||
extract descriptors from the model | ||
:param batch: batch to extract descriptors for. Has shape BxCxHxW. | ||
:param layers: layer to extract. A number between 0 to 11. | ||
:param facet: facet to extract. One of the following options: ['key' | 'query' | 'value' | 'token'] | ||
:param bin: apply log binning to the descriptor. default is False. | ||
:return: tensor of descriptors. Bx1xtxd' where d' is the dimension of the descriptors. | ||
""" | ||
assert facet in ['key', 'query', 'value', 'token'], f"""{facet} is not a supported facet for descriptors. | ||
choose from ['key' | 'query' | 'value' | 'token'] """ | ||
self._extract_features(batch, [layer], facet) | ||
x = self._feats[0] | ||
if facet == 'token': | ||
x.unsqueeze_(dim=1) #Bx1xtxd | ||
if not include_cls: | ||
x = x[:, :, 1:, :] # remove cls token | ||
else: | ||
assert not bin, "bin = True and include_cls = True are not supported together, set one of them False." | ||
if not bin: | ||
desc = x.permute(0, 2, 3, 1).flatten(start_dim=-2, end_dim=-1).unsqueeze(dim=1) # Bx1xtx(dxh) | ||
else: | ||
desc = self._log_bin(x) | ||
return desc | ||
|
||
def extract_saliency_maps(self, batch: torch.Tensor) -> torch.Tensor: | ||
""" | ||
extract saliency maps. The saliency maps are extracted by averaging several attention heads from the last layer | ||
in of the CLS token. All values are then normalized to range between 0 and 1. | ||
:param batch: batch to extract saliency maps for. Has shape BxCxHxW. | ||
:return: a tensor of saliency maps. has shape Bxt-1 | ||
""" | ||
assert self.model_type == "dino_vits8", f"saliency maps are supported only for dino_vits model_type." | ||
self._extract_features(batch, [11], 'attn') | ||
head_idxs = [0, 2, 4, 5] | ||
curr_feats = self._feats[0] #Bxhxtxt | ||
cls_attn_map = curr_feats[:, head_idxs, 0, 1:].mean(dim=1) #Bx(t-1) | ||
temp_mins, temp_maxs = cls_attn_map.min(dim=1)[0], cls_attn_map.max(dim=1)[0] | ||
cls_attn_maps = (cls_attn_map - temp_mins) / (temp_maxs - temp_mins) # normalize to range [0,1] | ||
return cls_attn_maps | ||
|
||
def chunk_cosine_sim(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: | ||
""" Computes cosine similarity between all possible pairs in two sets of vectors. | ||
Operates on chunks so no large amount of GPU RAM is required. | ||
:param x: an tensor of descriptors of shape Bx1x(t_x)xd' where d' is the dimensionality of the descriptors and t_x | ||
is the number of tokens in x. | ||
:param y: a tensor of descriptors of shape Bx1x(t_y)xd' where d' is the dimensionality of the descriptors and t_y | ||
is the number of tokens in y. | ||
:return: cosine similarity between all descriptors in x and all descriptors in y. Has shape of Bx1x(t_x)x(t_y) """ | ||
result_list = [] | ||
num_token_x = x.shape[2] | ||
for token_idx in range(num_token_x): | ||
token = x[:, :, token_idx, :].unsqueeze(dim=2) # Bx1x1xd' | ||
result_list.append(torch.nn.CosineSimilarity(dim=3)(token, y)) # Bx1xt | ||
return torch.stack(result_list, dim=2) # Bx1x(t_x)x(t_y) | ||
|
||
""" taken from https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse""" | ||
def str2bool(v): | ||
if isinstance(v, bool): | ||
return v | ||
if v.lower() in ('yes', 'true', 't', 'y', '1'): | ||
return True | ||
elif v.lower() in ('no', 'false', 'f', 'n', '0'): | ||
return False | ||
else: | ||
raise argparse.ArgumentTypeError('Boolean value expected.') | ||
|
||
|
||
mean = (0.485, 0.456, 0.406) #if "dino" in model_type else (0.5, 0.5, 0.5) | ||
std = (0.229, 0.224, 0.225) #if "dino" in model_type else (0.5, 0.5, 0.5) | ||
prep = transforms.Compose([ | ||
# transforms.ToTensor(), | ||
transforms.Resize((224,224)), | ||
transforms.Normalize(mean=mean, std=std) | ||
]) | ||
|
||
extractor = None | ||
device = 'cuda' if torch.cuda.is_available() else 'cpu' | ||
cosine_sim = torch.nn.CosineSimilarity(dim=2) | ||
|
||
def dino_loss(img0, img1, model_type='dinov2_vitb14', | ||
stride=14, layer=3, facet='token', bin=False): | ||
""" | ||
:param img0: image tensor [batch,3,h,w] | ||
:param img1: image tensor [batch,3,h,w] | ||
:param layer: layer from which to extract features [0,11] | ||
:param facet: facet to extract. One of the following options: ['key' | 'query' | 'value' | 'token'] | ||
""" | ||
global extractor | ||
if extractor is None: | ||
extractor = ViTExtractor(model_type, stride, device=device) | ||
extractor.requires_grad = False | ||
|
||
descs_a = extractor.extract_descriptors(prep(img0.to(device)), | ||
layer, facet, bin, include_cls=True) | ||
|
||
descs_b = extractor.extract_descriptors(prep(img1.to(device)), | ||
layer, facet, bin, include_cls=True) | ||
|
||
similarities = cosine_sim(descs_a, descs_b) | ||
similarities = torch.mean(similarities, dim=2) | ||
|
||
return 1 - similarities.mean() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.