Skip to content

codamin/multiview_depth_prediction_robustness

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multiview Robustness

In this repository, we provide the code for the project "Multiview Robustness" as the final project for the EPFL's CS-503 Visual Intelligece course by Prof. Amir Zamir in Spring 2023.

File Hierarchy

|-- multiview_robustness
    |-- run_baseline.py                 # training script for the multiview model
    |-- run_multiview.py                # training script for the baseline model
    |-- cfgs
    |   |-- baseline.yaml               # baseline model configuration file
    |   |-- multiview.yaml              # multiview model configuration file
    |-- results                         # empty folder for saving the results
    |-- scripts
    |   |-- attention_plots.py          # script to plot the attention plots
    |   |-- test_baseline_omnidata.py   # script to test the baseline model
    |   |-- test_multiview_omnidata.py  # script to plot the multiview model
    |-- src
    |   |-- checkpoint.py               # functions to save/load model checkpoints
    |   |-- utils.py                    # extra helper functions
    |   |-- dataloaders
    |   |   |-- rgb_depth_dataset.py    # default dataloader for the training scripts
    |   |-- losses
    |   |-- models
    |       |-- multiview_model.py      # multiview model implementation

Installing Packages

To install the required packages, run the following command:

pip install -r requirements.txt

Dataset

To download the train dataset follow the instructions here and run the following command:

omnitools.download point_info rgb depth_zbuffer  \    
    --components replica_gso \
    --subset fullplus \
    --dest ./omnidata_starter_dataset/ \
    --name YOUR_NAME --email YOUR_EMAIL --agree_all

and divide it into train, validation and test folders. Each of these folders should contain 3 folders named point_info, rgb and depth_zbuffer.

Running the experiments

Before running the experiments, in the yaml files in cfgs folder specify the path to train, validation and test dataset. To train the baseline DPT model run the command:

python run_baseline.py --config  cfgs/baseline.yaml

And to train the multiview DPT model run the following:

python run_multiview.py --config  cfgs/multiview.yaml

The weights and sample outputs will be saved in the output_dir specified in the configuratoin. To get the description of the arguments in the configuration files run the following command:

python run_multiview.py --help

Inference

Similar to the training scripts to test the baseline run the command:

python scripts/test_baseline_omnidata.py --config  cfgs/baseline.yaml

And to test the multiview model run:

python scripts/test_multiview_omnidata.py --config  cfgs/multiview.yaml

To get the attention ratio figures for the multiview model run this command:

python scripts/attention_plots.py --config  cfgs/multiview.yaml

All of the results will be saved in the specified output_dir in the configuratoin.

Group Members

Alphabetical Order:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages