Code for the paper "Classification-Specific Parts for Improving Fine-Grained Visual Categorization"
Clone the repository and initialize the submodules
git clone git@github.com:cvjena/cs_parts.git
cd cs_parts
git submodule init
git submodule update
conda env create -n cs_parts python~=3.7.0
conda activate cs_parts
conda install -c conda-forge -c nvidia cudatoolkit=11.0.3 \
cudatoolkit-dev=11.0.3 nccl cudnn
pip install --no-cache-dir cupy-cuda110~=7.8.0
python -c "import cupy; cupy.show_config(); print(cupy.zeros(8) + 1)"
# should display something like this:
# CuPy Version : 7.8.0
# CUDA Root : /home/korsch/.miniconda3/envs/cs_parts
# CUDA Build Version : 11000
# CUDA Driver Version : 12000
# CUDA Runtime Version : 11000
# cuBLAS Version : 11200
# cuFFT Version : 10201
# cuRAND Version : 10201
# cuSOLVER Version : (10, 6, 0)
# cuSPARSE Version : 11101
# NVRTC Version : (11, 0)
# cuDNN Build Version : 8002
# cuDNN Version : 8201
# NCCL Build Version : 2708
# NCCL Runtime Version : 2708
# CUB Version : Enabled
# cuTENSOR Version : None
# [1. 1. 1. 1. 1. 1. 1. 1.]
pip install -r requirements.txt
conda env create -n cs_parts python~=3.9.0
conda activate cs_parts
conda install -c conda-forge -c nvidia cudatoolkit=11.0.3 \
cudatoolkit-dev=11.0.3 nccl cudnn
# installs cupy version 7.8.0.post1 directly from source, since the
# wheels are only built for python3.7
pip install --no-cache-dir -e git+https://github.com/cupy/cupy.git@3e3635d802eda54a4b8c96d0126c646e97c3d239#egg=cupy
python -c "import cupy; cupy.show_config(); print(cupy.zeros(8) + 1)"
# should display something like this:
# CuPy Version : 7.8.0
# CUDA Root : /home/korsch/.miniconda3/envs/cs_parts
# CUDA Build Version : 11000
# CUDA Driver Version : 12000
# CUDA Runtime Version : 11000
# cuBLAS Version : 11200
# cuFFT Version : 10201
# cuRAND Version : 10201
# cuSOLVER Version : (10, 6, 0)
# cuSPARSE Version : 11101
# NVRTC Version : (11, 0)
# cuDNN Build Version : 8002
# cuDNN Version : 8201
# NCCL Build Version : 2708
# NCCL Runtime Version : 2708
# CUB Version : Enabled
# cuTENSOR Version : None
# [1. 1. 1. 1. 1. 1. 1. 1.]
pip install -r requirements.txt
- Download the needed datasets. Set up the according paths in the
data_info.yml
file. - Download the fine-tuned models or copy your own models to the
models
folder
You could either start the whole pipeline for the default dataset (CUB200
):
./run.sh
or set according datasets (and GPUs) manually:
GPU=0 DATASET=NAB ./run.sh
GPU=1 DATASETS=FLOWERS ./run.sh
GPU=1 BATCH_SIZE=16 DATASETS=CARS ./run.sh
The extracted features (features.npz
), the trained L1-SVM, and part locations (part_locs.txt
) will be stored in outputs/<DATASET>/<MODEL_TYPE>/<timestamp>
folder.
You can also restart the experiment using already extracted features and/or trained L1-SVM by setting the --checkpoint
parameter, e.g.:
./run.sh --checkpoint outputs/CUB200/cvmodelz.InceptionV3/2023-10-05-11.27.16.471332713
You are welcome to use our code in your research! If you do so please cite it as:
@inproceedings{Korsch19_CSPARTS,
title = {Classification-Specific Parts for Improving Fine-Grained Visual Categorization},
booktitle = {German Conference on Pattern Recognition (GCPR)},
author = {Dimitri Korsch and Paul Bodesheim and Joachim Denzler},
pages = {62--75},
year = {2019},
}
This work is licensed under a GNU Affero General Public License.